

Measurement of exclusive B-hadron production at 7 TeV with the CMS experiment

Hans-Christian Kästli, PSI for the CMS collaboration June 16, 2011

Contents

- Introduction
- The CMS detector
- Common to all: J/Ψ reconstruction
- $B^0 \rightarrow J/\Psi K_s(\pi^+ \pi^-)$
- $B^+ \rightarrow J/\Psi K^+$
- $B^0_{s} \rightarrow J/\Psi \phi (K^+ K^-)$
- Conclusion / Outlook

Introduction

- Early measurement possible due to large cross section
- Measurement at new energy allows tests of perturbative QCD and MC generators
- Improves understanding of b backgrounds for physics searches like Higgs, SUSY and other exotic physics
- Improves understanding of the detector, especially tracking and muon reconstruction

Hans-Christian Kästli, PSI

pp collisions @ a CM energy of 7 TeV/c^2 Data taken in 2010 with the CMS detector at the LHC

Hans-Christian Kästli, PSI

Exclusive B decays

Exclusive B decays

- Goal: measuring differential production cross-section in bins of p_T and y of the B mesons
- Strategy:
 - Build J/ Ψ candidates from muons
 - Combine with 1 (2) tracks from same vertex to form B^+ (B_s^0) candidates or with 2 tracks from new vertex consistent with K_s mass for B^0 candidates
 - Kinematic fit with mass and vertex constraints
 - Extract signal yields from unbinned 2 dimensional maximum likelihood fit in variables m_B and ct with shape parameters determined from data as far as possible
- We don't distinguish between a neutral B meson and its charge conjugate.

Hans-Christian Kästli, PSI

J/ Ψ reconstruction

Common to all 3 analyses:

- Trigger: Di-muon, without explicit p^{μ}_{T} cut
- Muon selection:

$ \eta^{\mu} < 1.3$,	$p^{\mu}_{T} > 3.3 \text{ GeV/c}$
$1.3 < \eta^{\mu} < 2.2$,	$p^{\mu} > 2.9 \text{ GeV/c}$
$2.2 < \eta^{\mu} < 2.4$,	$p^{\mu}_{T} > 0.8 \text{ GeV/c}$

• J/Ψ reconstruction:

Oppositely charged muons fitted to common vertex Muons matched to trigger objects $|m_{\mu\mu} - m_{J/\Psi,PDG}| < 150 \text{ MeV/c}^2$

Efficiency for J/ Ψ

$$\varepsilon_{J/\Psi} = \varepsilon_{\mu_1} \cdot \varepsilon_{\mu_2} \cdot \text{corr}$$

where $\varepsilon_{\mu i}$ are the single muon efficiencies and **corr** is a correction factor for di-muon correlation effects, determined from simulation

The single muon efficiencies can be factorized as

$$\varepsilon_{\mu_i} = \varepsilon_{\mu_i \text{ trigger}} \cdot \varepsilon_{\mu_i \text{ ID}} \cdot \varepsilon_{\mu_i \text{ tracking}}$$

and each term is measured independently from data using a tag & probe method

Efficiency determined for each bin in p_T and y of the corresponding signal B meson.

Hans-Christian Kästli, PSI

- Accepted by PRL, preprint arXiv:1104.2892
- Integrated luminosity: $39.6 \pm 1.6 \text{ pb}^{-1}$
- Selection and reconstruction:
 - J/ Ψ candidate from above
 - K_s candidate:
 - 2 oppositely charged tracks (≥ 6 hits, $\chi^2/dof < 5$, $d_0 > 0.5\sigma$)
 - Vertex fit ($\chi^2 < 7$, transverse distance from beamline > 5 σ)
 - 478 MeV/ $c^2 < M_{Ks} < 518$ MeV/ c^2
 - B^0 candidate:
 - Kinematic fit with constraints on $M_{J/\Psi}$ and M_{Ks}
 - $4.9 \text{ GeV/c}^2 < M_{B0} < 5.7 \text{ GeV/c}^2$
 - B^0 decay vertex probability > 1%.
- Total number of events after selection: 23174

Backgrounds and probability density functions in m_B and ct All shape parameters are extracted from data, except for the peaking background and the PDF for the signal m_B , which are taken from MC

Component	P.D.F. for m _B	P.D.F. for ct
Signal	Sum of 2 Gaussians	$R \otimes Exponential$
Peaking B Like B ⁰ →J/Ψ K [*] (892)	Sum of 3 Gaussians	$R \otimes Exponential$
Prompt J/Ψ	Exponential	R
Combinatorial BB	Exponential	$R \otimes (sum of 2 exponentials)$

where R is a common resolution function = sum of two Gaussians

Hans-Christian Kästli, PSI	June 16, 2011	10
Hans-Christian Kästli, PSI	June 16, 2011	10

2D unbinned maximum likelihood fit: data driven fit procedure in 3 steps

- 1. High mass side band fit in m_B and ct to determine effective lifetime of combinatorial background
- 2. Full mass range fit to determine signal lifetime
- 3. Extract yields from full fit in bins of p_{T}^{B} and $|y_{B}|$ with (effective) lifetimes fixed from above.

Systematic uncertainties

Contribution	Value
PDF parameters and potential fit bias	4 – 7 %
Effect of final state radiation on signal mass shape	1 %
Trigger efficiency	2-3%
Muon identification	1 %
Muon tracking efficiency	1 %
K _s selection	5 %
B ⁰ selection	3 %
Acceptance	2 - 3%
Di-muon correlation	1 – 5 %
Mismeasurement of p^{B}_{T} and y^{B}	1 %
Kinematic reweighting	3-5%
Total uncorrelated error	10 - 12 %
Branching fractions	3.8 %
Luminosity	4 %
Hans-Christian Kästli, PSI June 16, 2011	12

Total cross section for $p_T(B^0) > 5$ GeV/c and $|y_{B0}| < 2.2$:

 $\sigma(pp \rightarrow B^0 X) = 33.2 \pm 2.5(\text{stat}) \pm 3.5(\text{syst})\mu b$ Prediction from MC@NLO = $25^{+9.6}_{-6.2}\mu b$

Hans-Christian Kästli, PSI

$B^+ \rightarrow J/\Psi(\mu^+ \mu^-) K^+$

- Phys. Rev. Lett. 106, 112001 (2011), arXiv:1101.0131
- Integrated luminosity: 5.8 pb⁻¹
- Selection and reconstruction:
 - J/Ψ candidate from above
 - B⁺ candidate:
 - Combine with track (≥ 4 hits, χ^2 /ndof < 5) with kaon mass hypothesis and $p_T > 0.9$ GeV/c
 - Kinematic fit with constraint on $M_{J/\Psi}$
 - $4.95 \text{ GeV/c}^2 < m_{B+} < 5.55 \text{ GeV/c}^2$
 - B+ decay vertex probability > 0.1%. Choose candidate with highest p_T
- Total number of events after selection: 35406

$B^+ \rightarrow J/\Psi(\mu^+ \mu^-) K^+$

Backgrounds and probability density functions in m_B and ct

Component	P.D.F. for m _B	P.D.F. for ct
Signal	Sum of 3 Gaussians	$R \otimes Exponential$
J/Ψ π Cabbibo suppressed	Sum of 2 Gaussians	$R \otimes Exponential$
Peaking B Mainly $B^0 \rightarrow J/\Psi K^*$, $B^0 \rightarrow \chi_c X$	Sum of 2 Gaussians + exponential	$R \otimes Exponential$
Prompt J/Ψ	Exponential	R
Combinatorial BB	Exponential	$R \otimes (sum of 2 exponentials)$
where R is a common resolution function = sum of two or three Gaussians		
Hans-Christian Kästli, PSI	June 16, 2011	15

ans-Christian Kästli, PSI	June 16, 2011	15
	June 10, 2011	10

$B^+ \rightarrow J/\Psi(\mu^+ \mu^-) K^+$

2D unbinned maximum likelihood fit: data driven fit procedure in 3 steps

- 1. High mass side-band fit in ct to determine effective lifetime of combinatorial background.
- 2. Same fit in bins of p_T and |y| but with ct fixed from above to determine resolution function
- 3. Extract yields from full fit with m_B PDFs for signal, J/ $\Psi \pi$ and peaking background from MC, ct parameters from above

Hans-Christian Kästli, PSI

Systematic uncertainties

Contribution	Value
PDF parameters and potential fit bias	2-5 %
ct resolution function	1-2%
Effect of final state radiation on signal mass shape	< 1 %
Trigger efficiency	2 %
Muon identification	1 %
Tracking efficiency for muon and hadron	1 - 4 %
B ⁺ momentum spectrum	1 - 4 %
Efficiency of vertexing	1.5 %
Misalignment	2 %
Total uncorrelated errors	6 - 10 %
Branching fractions	3.5 %
Luminosity	11 %

Hans-Christian Kästli, PSI

$B^{+} \rightarrow J/\Psi(\mu^{+} \mu^{-}) K^{+}$

Total cross section for $p_T(B^+) > 5 \text{ GeV/c}$ and $|y_{B_+}| < 2.4$: $\sigma(pp \rightarrow B^+X) = 28.1 \pm 2.4(\text{stat}) \pm 2.0(\text{syst}) \pm 1.1(\text{lumi}) \ \mu \text{b}$ Prediction from MC@NLO = $25.5^{+9.2}_{-5.7} \ \mu \text{b}$

Hans-Christian Kästli, PSI

$\mathbf{B^{0}}_{s} \xrightarrow{} J/\Psi(\mu^{+} \mu^{-}) \phi(\mathbf{K^{+} K^{-}})$

- •Approved result
- •Integrated luminosity: $39.6 \pm 1.6 \text{ pb}^{-1}$
- •Selection and reconstruction:
 - •J/ Ψ candidate from above with $p_T > 0.5$ GeV/c
 - \$\phi\$ candidate:

2 oppositely charged tracks (≥ 5 hits, $\chi^2/dof < 5$) with kaon mass hypothesis, $p_T > 0.7$ GeV/c

 $1009 \text{ MeV/c}^2 < M_{\phi} < 1029 \text{ MeV/c}^2$

- •B_s⁰ candidate:
 - •Kinematic fit with constraint on $M_{J\!/\!\Psi}$

• B_s^0 decay vertex probability > 2%. Choose candidate with highest probability

- •8 GeV/c < p_T < 50 GeV/c, $|y_B|$ < 2.4
- •5.20 GeV/c² < M_{Bs} < 5.65 GeV/c2

•Total number of events after selection: 6200

$B^0_{s} \rightarrow J/\Psi(\mu^+ \mu^-) \phi(K^+ K^-)$

Backgrounds and probability density functions in m_B and ct

Component	P.D.F. for m _B	P.D.F. for ct
Signal	Sum of 2 Gaussians	$R \otimes$ exponential
Non-prompt J/ Ψ Misreconstructed B decays to J/ Ψ and higher mass K- mesons	Second order polynomial	$R \otimes (sum of 2 exponentials)$
Prompt J/Ψ	First order polynomial	R
where R is a common resolution function = sum of two Gaussians		

Hans-Christian Kästli, PSIJune 16, 201120	Hans-Christian Kästli, PSI	June 16, 2011	20
---	----------------------------	---------------	----

$B^0_{\ s} \rightarrow J/\Psi(\mu^+ \mu^-) \phi(K^+ K^-)$

2D unbinned maximum likelihood fit: data driven fit procedure in 3 steps

- 1. Mass side-band fit in ct to determine effective lifetime of combinatorial background.
- 2. Same fit in bins of p_T and |y| but with ct fixed from above to determine resolution function
- 3. Extract yields from full fit with m_B PDF for signal from MC, ct parameters from above

Systematic uncertainties

Preliminary

Contribution	Value
PDF parameters and potential fit bias	2-4 %
Muon efficiency (trigger + ID + tracking)	3 - 5 %
Tracking efficiency for hadron pair, including misalignment	9 %
B ⁰ _s momentum spectrum	2 - 3 %
Reconstruction efficiency	3 %
Total uncorrelated error	9 - 12 %
Branching fractions	1.4 %
Luminosity	4 %

Hans-Christian Kästli, PSI

$B_{s}^{0} \rightarrow J/\Psi(\mu^{+} \mu^{-}) \phi(K^{+} K^{-})$

Preliminary

Total cross section for 8 GeV/c < $p_T(B_s^0)$ < 50 GeV/c and $|y_{Bs}|$ < 2.4 : $\sigma(pp \rightarrow B_s^0 \rightarrow J/\Psi \phi) = 6.9 \pm 0.6(\text{stat}) \pm 0.6(\text{syst}) \text{ nb}$ Prediction from MC@NLO = $4.6_{-1.7}^{+1.9} \text{ nb}$

Hans-Christian Kästli, PSI

Conclusion

•First measurements of total and differential cross sections for B^+ , B^0 and $B_s^{\ 0}$ at the LHC

•Good agreement with predictions from MC@NLO

•Results show the great performance of the CMS detector

Outlook

Coming soon:

 $\Lambda_b \rightarrow J/\Psi (\mu^+ \mu^-) \Lambda^0(p \pi)$ Differential cross section and lifetime measurement Using data taken in 2010-2011

