

Measurements of Inclusive B-quark Production at 7 TeV with the CMS Experiment

P. Bellan

on behalf of the CMS Collaboration

> Hadron 2011 Münich, DE

> 13-17 June 2011

Summary

- LHC and CMS at Glance
- b-hadron Physics: Main Features and Reasons of Interest
- b-tagging with CMS Detector
- Inclusive b-hadron Production with Muons
- b-hadron Measurements with Secondary Vertexing
- Conclusions and Outlook

The LHC accelerator

CMS

Excellent performances of the machine running smoothly @ 7 TeV since 2010

Current records:

Instantaneous luminosity already reached $1.27 \times 10^{33} \text{ cm}^{-2} \text{s}^{-1}$

1092 proton bunches circulating, up to with $1.7 \cdot 10^{11}$ protons/bunch , time spacing 50 ns.

47 pb⁻¹ delivered to CMS by the end of the 2010 pp run;

In 2011, \sim 750 pb⁻¹ up to beginning of June; Overall CMS data taking efficiency > 90%;

The CMS Collaboration

3170 Physicist and engeneers, 169 institutes from 39 countries

- Highly redundant muon system, triggering and recording muons with $p_T > 1-3$ GeV and $|\eta| < 2.4$
- Tracking efficiency > 99% for central muons

4 T solenoid + return yoke

```
Si pixels, strips
σ/p<sub>T</sub>≈ 1.5x10<sup>-4</sup>p<sub>T</sub>+ 0.005
```

PbWO4 crystals $\sigma/E \approx 3\%/\sqrt{E} + 0.003$

Brass+scintillator (7 λ + catcher) $\sigma/E \approx 100\%/\sqrt{E} + 0.05 \text{ GeV}$

σ/p_T ≈ 1% @ 50GeV to 10% @ 1TeV (DT/CSC+Tracker)

L1+HLT (L2 + L3)

All silicon inner tracker allowing good resolution on p_{τ} and impact parameter measurements

B-physics mainly relaying on:

- Muon detectors, for muon ID in semi-leptonic decays;
- Silicon Tracker detector, for b-tagging, lifetime measurements and inv. mass reconstruction.³

b-handrons and b-jets: what's the deal

- Large beauty production cross section @ LHC at 7 TeV, new kinematical region accessible
- Cross section computed at NLO, essential at the LHC energy; in the past, tension between experimental and theoretical results
- Typical multi-scale process (\sqrt{s} , m_b, factorization, renormalization) large theoretical uncertainties
- $_{\mbox{\scriptsize B}}$ B-hadron $\mbox{\scriptsize p}_{\mbox{\scriptsize T}}$ spectra depending on the non-perturbative part (parametriz of fragm. function)
- Large scale dependence symptom of possibly large relevance of high order term @ low-p_T: small-x effects $(x = m_b / \sqrt{s});$ $\alpha_s^2 g_Q$

@ high- p_T : large log terms due to multiple gluon radiation.

b-jets

- Enclosing most of the radiation emitted by the b-quark
- High performance of tracking capabilities required, fully exploiting the detector potentialities
- b-jets essential in many searches of New Physics
- Measurements complementary to b-hadrons.

P. Bellan

√s (TeV)

Jets and b-tagging

Х

- The following results obtained using jets reconstructed with anti-kT algorithm with DR=0.5 with particle-flow techniques or 'track jets';
- Typical values:
 - * jet resolution 10-15%;
 - * scale uncertainty < 3%;

Good tracker performance and alignment \rightarrow high b-tagging efficiency; Data well reproduced by MC

Different algorithms:

- * Track counting (based on Impact Parameter significance)
- * Secondary Vertex tagging (decay length significance)
- * Combined

b-jet cross section measurement

Highly non-trivial measurements Sizeable uncertainties from both theory and experiment

MEMO: standard jet definitions for flavoured jets are infrared-unsafe: soft gluons splitting into a gg pair can change the flavour of the jet

Main ingredients of the measurements:

- Number of tagged jets N_{tagged}
- b-tagging efficiency f_h : fit from MC, data/MC scale with muon p_{τ}^{rel}
- b-tag purity ε_{h} : fit from MC, data/MC scale from SV mass templates

Theoretical Uncertainties (~ in order of importance):

- PDF Uncertainty
- pQCD (Scale) Uncertainty
- Non-perturbative Corrections
- **PDF** Parameterization
- Knowledge of $\alpha_{e}(M_{z})$

Jet Algorithms used by CMS

- **Iterative Cone**
- SISCone
- (anti-)k_⊥

Master formula:

 $\frac{d^2 \sigma_{\rm b-jets}(p_T, y)}{dp_T dy} = \frac{N_{\rm tagged}(p_T, y) f_b c_{\rm smear}}{\epsilon_b \Delta p_T \Delta y \mathcal{L} \epsilon_{\rm jet}}$

Other corrections:

- > Unfolding correction C_{smear} to move the measured $\boldsymbol{p}_{\scriptscriptstyle T}$ back to particle level using the ansatz method (need jet energy resolutions)
- b-jet JEC: same as inclusive jets (Pythia predicts residual difference below ~1%)

P. Bellan

Hadron 2011

- **Experimental Uncertainties** (~ in order of importance):
 - Jet Energy Scale (JES)
 - Noise Treatment
 - **Pile-Up Treatment**
 - Luminosity
 - Jet Energy Resolution (JER)
 - **Trigger Efficiencies**
 - **Resolution in Rapidity**
 - **Resolution in Azimuth**
 - Non-Collision Background

Inclusive beauty production

JHEP 1103 (2011) 090

Semi-leptonic decays used to separate b-jets from *udscg* jets: distance from jet axis of muon from b decays on average **larger** than for light quarks

- Triggering on muon $p_T > 3$ GeV; ($p_T > 6$ GeV, $|\eta| < 2.1$ offline)
- "Track jets": tracks with $0.3 < p_T < 500 \text{ GeV}$ clustered with anti-k_T (R = 0.5); $E_T^{\text{jet}} > 1 \text{ GeV}$
- p_T^{rel} spectrum fitted with distribution obtained from simulation (signal, c) and data (other backgr.); binned log-likelihood technique
- Signal validated in a b-enriched sample
- c and udsg templates combined in the fit

P. Bellan

 Background dominated by hadrons misidentified as muons (mainly decay-in-flight), weighted by the misidentification rate from data; other sources neglected (< 3% from W @ high p_T)

JHEP 1103 (2011) 090

Inclusive beauty cross section

Measured visible cross section: $p_T(\mu) > 6 \text{ GeV}, |\eta(\mu)| < 2.1;$ $\sigma(pp \rightarrow b X \rightarrow \mu X) = (1.32 \pm 0.01(stat.) \pm 0.30(syst.) \pm 0.15 (lumi.)) \mu b$ $\sigma_{MC@NLO} = (0.95_{-0.21}^{+0.41} (scale) \pm 0.09(m_b) \pm 0.05(pdf)) \mu b;$ $\sigma_{PYTHIA} = 1.9 \ \mu b$

Results including efficiency of trigger (88±5)%, muon rec. (94±3)% and μ -jet association (77±8)%

Inclusive beauty cross section

9

Shapes reasonably well described by NLO QCD;

Shape confirmed by the findings from b production using fully reconstructed B⁺ mesons Uncertainty dominated by signal and background p_{τ}^{rel} shapes

CMS-PAS-BPH-10-009

Inclusive b from jet tagging with SV

Identification of b-jets performed through the Secondary Vertex (SV) tagging

Displaced vertices with \geq 3 tracks selected to identify b events; b-jets tagged using a high-purity SV tagger.

Discriminator: monotonic function of the 3D decay length; requirement on its significance corresponding to: tagging effic. = $60\% @ p_T^{jet} = 100 \text{ GeV}, ~0.1\%$ contamination

Inclusive jet sample (anti- $k_T R = 0.5$ with ParticleFlow) collected with minimum bias and single jet triggers combined;

b-tagging efficiency and mistag rates from c-jet and light jet taken from the MC and constrained by a data/MC scale factor from data

Analysis fot the b-jet tagging with SV

Jet energies correction: for the rapidity dependence \rightarrow from DATA for absolute scale and p_T dependence \rightarrow from MC Uncertainty of JEC estimated using γ +jet or with dijet p_T balance technique (barrel/endcaps)

11

Fit to the SV mass distribution: shapes from MC, relative normalisations for c and b jets let free, (small) contribution from light fixed to the MC expectation ("template fit")

Results cross-check with alternative method MC based;

b-jet cross-section results

Reasonable agreement with Pythia and MC@NLO Significant difference in shape though.

Leading systematic uncertainties @ $p_T > 30$ GeV:

- b JES relative to inclusive jets (4-5%),
- data-based constraints on b-tagging efficiency (20%)
- mistag rate for charm (3–4%) and for light jets (1–10%).

Conclusions and outlook

- Successful B physics results with 2010 data, very significant results obtained with early data;
- CMS able to perform inclusive measurements of b-hadron production with high precision;
- Heavy flavour production measurements performed with different techniques;
- Wealth of new data going to be used to refine theoretical models and improve MC simulation.

Thanks for your attention!

BACK UP SPLIDES

Торіс	arXiv	Article	Luminosity (nb ⁻¹)
Inclusive b-hadron production	1101.3512	JHEP 1103 (2011) 090	85
Inclusive b-jet with SV (ICHEP2010)		CMS-PAS-BPH-10-009	60

Particle Flow Technique in CMS

- In CMS, charged particles get well separated due to the huge tracker volume and the high magnetic field (3.8 T)
- •CMS has an excellent tracking resolution, able to go to down to very low momenta (~few hundred MeV)
- CMS has also an excellent electromagnetic calorimeter with good granularity
- In multijet events, only 10% of energy corresponds to neutral (stable) hadrons

Big improvement in energy resolution and tau identification using particle-flow techniques Hadron 2011

P. Bellan

- \bullet Intensities $N_{\rm 1.2}$ measured by LHC beam current transformers
- Shape and size of the interaction region, A_{eff}, measured via Van der Meer scans: relative variations or rate as a function of the transverse separation between beams
- Rates measured in CMS using fraction of zero counts of HF and vertexing

Systematic	Error (%)
Effective Area Determination	2.7
Beam Intensity	2.9
Sample Dependence	0.7
Total	4.0

Uncertainty: 4% Luminosity correction wrt initial estimates: -0.7%

P. Bellan

Some technical details

The MC event generator PYTHIA 6.422 used to compute efficiencies and kinematic distributions. CTEQ6L1 PDF, $m_b = 4.8$ GeV, and Peterson fragm. funct. for c and quarks ($\epsilon_c = 0.05$, $\epsilon_b = 0.005$) Underlying event simulated with the 'D6T tune' setting.

Pileup events not included (negligible impact) Cross check sample with Evtgen for the b hadrons decay.

The MC@NLO package (NLO ME interfaced to herwig parton Shower): $m_b = 4.75 \text{ GeV}$; CTEQ6M.

The CASCADE generator o-shell LO ME, kT factorization with CCFM low-x evolution.

The unintegrated CCFM parton distribution set A0 and $m_{b} = 4.75 \text{ GeV}$

Events generated with mc@nlo and CASCADE not passed through the detailed detector simulation (studied only at the generator level)

Simulated events were reweighted to reproduce the branching ratio B(b $\rightarrow \mu v_{\mu} X$) = 10.95%

Results compared with the analytical FONLL calculation (CTEQ6.6 PDF set, m_{b} = 4.75 GeV, Kartvelishvili fragm. function with α = 24.2)

P. Bellan