Quarkonium production in pp collisions at √s = 7 TeV with the CMS experiment

Bora Akgün (Carnegie Mellon University) on behalf of CMS Collaboration

> Hadron 2011 Munich, June 14, 2011

Quarkonium production puzzle

- Hadroproduction of quarkonia is not fully understood
- No theory has simultaneously explained the experimental measurements of both cross section and polarization
- Opportunity at LHC to provide valuable input for understanding quarkonium production including reach to higher p_T

sqrt(s)=1.8 TeV

J/w production at the Tevatron

CDF data

J/ψ +g

 $J/\psi + cc$

J/w NLO

1.4 GeV < m_c < 1.6 GeV

25

NLO unc. band :

 $\mu_0/2 < \mu_{fr} < 2 \mu_0$

10

0.1

0.01

0.001

1e-04

1e-05

d\sigma /dP_T|_{\eta<0.6} .Br (nb/GeV)

CMS Di-muon Invariant Mass Spectrum

B.Akgün (Carnegie Mellon University)

CMS Di-muon Invariant Mass Spectrum

Muon Triggers @ CMS

- •Level 1 Trigger
 - Custom Hardware
 - Muon and Calorimeter System information only

•High Level Trigger (HLT)

- Software, computing farm
- Tracker included, fast (local) reconstruction
- Trigger requirements adapted to increasing luminosity
- Single-Muon Trigger Paths
 - p_T > 3 GeV/c threshold at LHC startup
 - Gradually increasing thresholds (e.g., $p_T > 7$ GeV/c at $\mathcal{L} \sim 10^{31}$ cm⁻²s⁻¹)
 - Require additional objects, e.g., single-muon plus track
- Di-Muon Trigger Paths
 - No p_T threshold, selection based on L1 only (for first 3 pb⁻¹)
 - At higher luminosities combination of L1 & HLT muon, track, mass cuts requirements
- Trigger used lower luminosities in 2010 for quarkonia studies
 - Demonstrated ability to trigger muons at low $\ensuremath{\mathsf{p}_{\mathsf{T}}}$

Cross Section Overview

 $\frac{d^2\sigma}{dp_T dy} \cdot B(X \to \mu\mu) = \frac{N_{fit} \langle \frac{1}{A \cdot \varepsilon} \rangle}{\mathcal{L} \cdot \Delta p_T \cdot \Delta y}$

N_{fit}: Corrected signal yield from fit to weighted di-muon invariant mass distribution, with per-event acceptance and efficiency corrections

- A: Detector acceptance from simulation
- ε: Muon trigger and reconstruction efficiencies measured in data with tag-and-probe method
- *L*: Integrated luminosity
- Δp_T , Δy : Transverse momentum and rapidity bin widths

Muon Kinematic Acceptance 5 4.5 4 3.5 J/ψ 0.9 0.8 p_T > 3.3 GeV/c for $|\eta| < 1.3$ 0.7 $p > 2.9 \text{ GeV/c for } 1.3 < |\eta| < 2.2$ 0.6 3 p_{T} > 0.8 GeV/c for 2.2 < $|\eta|$ < 2.4 2.5 0.5 2 1.5 1 Muon Efficiency p_{T} > 3.5 GeV/c for $|\eta| < 1.6$ 0.5 from MC p_T > 2.5 GeV/c for 1.6 < $|\eta|$ < 2.4 0

- Kinematical cuts for J/ψ analysis loose to study low $p_T J/\psi$'s
- Muons from Y have more uniform detector coverage

Selection and Yields

- Similar selection criteria for both J/ψ and Y
 - Trigger: di-muon at L1, without p_T requirements
 - Two muons opposite sign, vertex probability > 0.1%, muon track quality cuts

- Signal: Crystal Ball Function (Gauss + Exp FSR tail)
- Background: Exponential

 Signal: 3 Crystal Ball Functions, fixed mass peak differences and shared resolution
Background: 2nd-order polynomial

- Evaluated from simulation
- Reconstructed Y down to zero p_T
- Depends on Y p_{T} , y and production polarization
- Upsilon production polarization is unknown
 - Acceptance changes by up to 20%
 - Quote results for 5 polarization scenarios: unpolarized, longitudinal and transverse in Collins-Soper and helicity frames

Y(nS) Cross Section Results

• Measured cross sections for |y|<2:

$$\begin{split} &\sigma(\mathrm{pp} \to \mathrm{Y}(1\mathrm{S})X) \cdot \mathcal{B}(\mathrm{Y}(1\mathrm{S}) \to \mu^+\mu^-) = 7.37 \pm 0.13(\mathrm{stat.})^{+0.61}_{-0.42}(\mathrm{syst.}) \pm 0.81(\mathrm{lumi.}) \, \mathrm{nb} \\ &\sigma(\mathrm{pp} \to \mathrm{Y}(2\mathrm{S})X) \cdot \mathcal{B}(\mathrm{Y}(2\mathrm{S}) \to \mu^+\mu^-) = 1.90 \pm 0.09(\mathrm{stat.})^{+0.20}_{-0.14}(\mathrm{syst.}) \pm 0.24(\mathrm{lumi.}) \, \mathrm{nb} \\ &\sigma(\mathrm{pp} \to \mathrm{Y}(3\mathrm{S})X) \cdot \mathcal{B}(\mathrm{Y}(3\mathrm{S}) \to \mu^+\mu^-) = 1.02 \pm 0.07(\mathrm{stat.})^{+0.11}_{-0.08}(\mathrm{syst.}) \pm 0.11(\mathrm{lumi.}) \, \mathrm{nb} \end{split}$$

- Values shown for unpolarized assumption
 - Extreme scenarios yield variations by 20%
- Dominant systematic uncertainties
 - Muon reconstruction/trigger efficiency from T&P (~8%)
 - Luminosity normalization (11%)

Differential Cross Section

$p_{\rm T}$	$\sigma \cdot B$	stat.	$\Sigma_{\text{syst.}}$	$\Delta \sigma$	HX-T	HX-L	CS-T	CS-L
(GeV/c)	(nb)	(%)	(%)	(%)	Pol	arization	า ซล. ซ⇒	20%
		Y(15))	y < 2			1 V 601.	NO 70
0-30	7.37	1.8	8 (6)	14 (13)	+16	-22	+13	-16
0-1	0.30	8	10(7)	17 (15)	+16	-22	+17	-23
1-2	0.90	5	9 (6)	15 (14)	+16	-20	+19	-24
2-3	1.04	5	8 (6)	14 (13)	+15	-20	+19	-24
3-4	0.88	6	9 (7)	15 (14)	+18	-23	+18	-23
4–5	0.90	6	8 (6)	15 (14)	+18	-23	+16	-21
5-6	0.82	6	8 (6)	15 (14)	+17	-23	+13	-19
6–7	0.64	7	8 (5)	15 (14)	+17	-22	+11	-16
7-8	0.51	7	8 (6)	15 (14)	+16	-22	+7	-10
8–9	0.33	8	8 (6)	16 (14)	+16	-22	+4	-5
9–10	0.25	8	9 (6)	16 (15)	+15	-21	+2	-1
10-12	0.36	6	8 (5)	15 (14)	+15	-21	-1	+3
12-14	0.18	8	9 (5)	16 (14)	+15	-20	-3	+7
14–17	0.14	9	10 (6)	17 (15)	+14	-19	-4	+9
17-20	0.06	12	10 (6)	19 (17)	+13	-18	-4	+10
20-30	0.06	12	10 (6)	19 (17)	+12	-17	-4	+10
		Y(2S))	y < 2				
0-30	1.90	4.2	9 (6)	15 (13)	+14	-19	+12	-15
0-2	0.25	12	11 (9)	20 (19)	+14	-19	+17	-22
2–4	0.48	8	12(10)	18 (17)	+12	-17	+18	-23
4–6	0.41	10	10 (8)	18 (17)	+16	-22	+15	-20
6–9	0.41	9	10(7)	17 (16)	+15	-21	+9	-13
9–12	0.21	10	9 (6)	17 (16)	+14	-20	+1	-0
12-16	0.09	13	10(7)	20 (19)	+14	-19	-2	+6
16-20	0.04	18	11 (8)	24 (23)	+12	-18	-4	+9
20-30	0.02	23	20 (18)	32 (32)	+12	-17	-5	+11
		Y(3S))	y < 2				
0–30	1.02	6.7	11 (8)	17 (15)	+14	-19	+10	-13
0–3	0.26	14	10(8)	21 (19)	+13	-18	+16	-22
3-6	0.29	14	18 (17)	26 (25)	+13	-18	+16	-21
6–9	0.24	14	11 (8)	21 (19)	+15	-20	+10	-13
9–14	0.16	12	10 (8)	19 (18)	+15	-20	-1	+2
14-20	0.05	17	11 (8)	23 (22)	+13	-18	-4	+9
20-30	0.03	20	12 (9)	26 (25)	+11	-16	-4	+9

Comparison to Theory

J/ψ Inclusive Measurement

• Total inclusive J/ ψ cross section in range 6.5 < p_T < 30 GeV/c and |y| < 2.4

 $\sigma(pp \to {\rm J}/\psi + {\rm X}) \cdot {\rm BR}({\rm J}/\psi \to \mu^+\mu^-) =$

97.5 \pm 1.5(stat) \pm 3.4(syst) \pm 10.7(luminosity) nb.

- Polarization induces up to 20% variations
- Dominant Systematic Uncertainties
 - Luminosity
 - Muon efficiencies from data
 - Fit function

Affected quantity	Source	Relative error (%)			
		y < 1.2	1.2 < y < 1.6	1.6 < y < 2.4	
Acceptance	FSR	0.8 - 2.5	0.3 - 1.6	0.0 - 0.9	
-	p_{T} calibration and resolution	1.0 - 2.5	0.8 - 1.2	0.1 - 1.0	
	Kinematical distributions	0.3 - 0.8	0.6 - 2.6	0.9 - 3.1	
	b-hadron fraction and polarization	1.9 - 3.1	0.5 - 1.2	0.2 - 3.0	
Efficiency	Muon efficiency	1.9 - 5.1	2.3 - 12.2	2.7 - 9.2	
-	ρ factor	0.5 - 0.9	0.6 - 8.1	0.2 - 7.1	
Yields	Fit function	0.6 - 1.1	0.4 - 5.3	0.3 - 8.8	
11/00/111		1 I I I I I I I I I I I I I I I I I I I		1.0	

Non-prompt J/ψ Fraction

 Simultaneous fit to J/ψ mass and pseudo-proper decay length

$$\ell_{J/\psi} = L_{xy} \cdot m_{J/\psi} / p_T$$

ψ(2S) & X(3872) $\rightarrow J/ψ$ ππ

Selection:

- J/ $\psi \rightarrow \mu\mu$
 - Similar to J/ψ analysis
- X(3782),ψ(2S)→J/ψππ
 - $p_T(\pi)>0.4 \text{GeV/c}, \Delta R_{J/\psi,\pi\pi}<0.7, p_T(\pi\pi)>1.5 \text{GeV/c}$
 - 4-track vertex fit χ^2 prob. >1%
 - p_T > 8GeV/c, |y| < 2.2

Fit Results:

- $m_{\psi(2S)}$ = 3685.9 ± 0.1 MeV
- m_{X(3872)}= 3870.2 ± 1.9 MeV PDG values:
- m_{ψ(2S)}= 3686.09 ± 0.04 MeV
- m_{X(3872)}= 3871.56 ± 1.9 MeV

• First of a set of exotic states

Ratio of σ .BR for X(3872) to ψ (2S)

- Extract the number of $\psi(2S)$ and X(3872) from the invariant mass spectrum of J/ $\psi~\pi\pi$

Calculate the ratio

$$R = \frac{\sigma(pp \to X(3872) + anything)BR(X(3872) \to J/\psi\pi^{+}\pi^{-})}{\sigma(pp \to \psi(2S) + anything)BR(\psi(2S) \to J/\psi\pi^{+}\pi^{-})} = \frac{\mathsf{N}_{X(3872)}}{\mathsf{N}_{\psi(2S)}} \times \mathsf{C}$$

• Correction factor taking into account the kinematical differences of the decay products from Monte Carlo studies $C = 0.872 \pm 0.015$

- Dominant Systematic Uncertainties
 - Variation of the the non-prompt fraction for X(3872) and $\psi(2S)$
 - Background parameterization and signal extraction

R = 0.087 ± 0.017 (stat.) ± 0.009 (sys.)

Available as CMS public document: http://cms-physics.web.cern.ch/cms-physics/public/BPH-10-018-pas.pdf

 $\chi_{\rm c} \rightarrow \mathbf{J}/\psi$

CMS Experiment at LHC, CERN

umi section: 31 htt/Crossing: 8045444

Data recorded: Thu Oct 14 08:17:48 2010 CEST Run/Event: 147929 / 30084678

Binned maximum likelihood fit

- Signal:
 - 2 Crystal Ball Functions with $\Delta m(\chi_{c1},\chi_{c2})$ fixed
- CMS has observed the χ_{c1} and χ_{c2} charmonium states through their radiative decay to J/ Ψ + γ
- The photons are reconstructed using photon conversions in the inner tracker

Conclusions

• First production cross-section measurements at 7 TeV pp collisions of J/ ψ [arXiv:1011.4193] and Υ (ns) [arXiv:1012.5545]

- CMS has now recorded more than 700pb⁻¹ of pp data
 - Expect more precise cross section and polarization measurements
- Improved results are on the way!

Efficiency

 $\epsilon(\mathsf{total}) = \epsilon(\mathsf{trig}|\mathsf{id}) \cdot \epsilon(\mathsf{id}|\mathsf{track}) \cdot \epsilon(\mathsf{track}|\mathsf{accepted})$

• Calculated from data, using tag-and-probe method on J/ψ sample

• T&P: unbinned maximum likelihood fit to passing and failing tag-probe mass distributions

