CHIRAL DYNAMICS AT KLOE, MAINZ, ELSA AND OTHER LABS

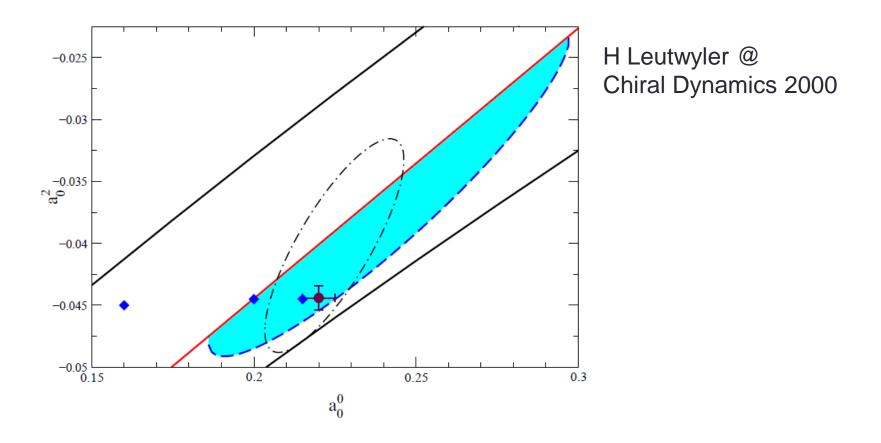
F. Ambrosino

Università degli Studi di Napoli «Federico II» e Sezione INFN, Napoli, Italy

Chiral Dynamics

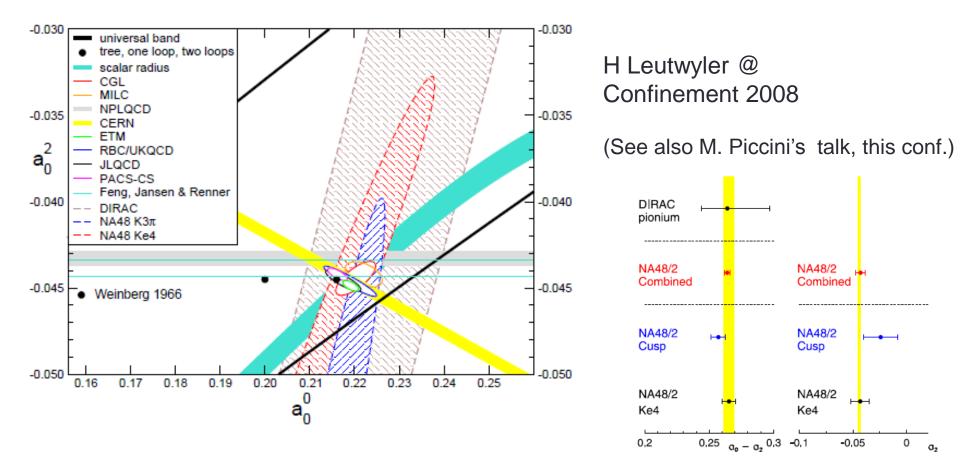
- Study of (pseudo)Goldstone bosons dynamics: pions, kaons etas
- The most interesting observables vanish in the Chiral limit $m_{\rm u}$ = $m_{\rm d}$ = $m_{\rm s}$ = 0
 - $> \pi \pi$ scattering lengths

 $>\eta \rightarrow 3\pi$


 $> \pi N$ scattering, photoproduction at threshold

≻...

- This talk: a *personal* choice in a vast field....
- N. B. the speaker spent last 5 years or so in measuring η ->3 π at KLOE...


$\pi\pi$ scattering lengths

 An enormous and successful effort from experiments, ChPT and lattice calculations during last 10 years.

$\pi\pi$ scattering lengths

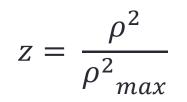
 An enormous and successful effort from experiments, ChPT and lattice calculations during last 10 years.

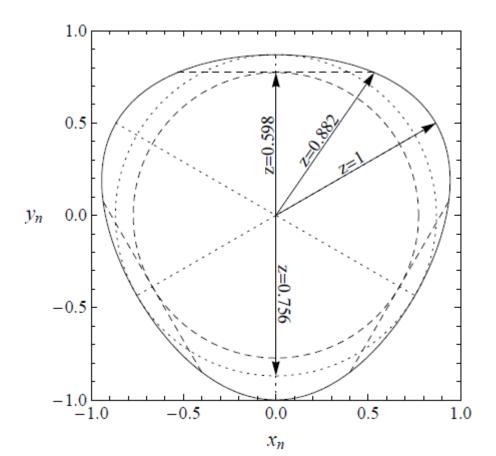
$\eta \rightarrow 3\pi$: motivations

- G parity violating \rightarrow Isospin breaking effects
- EM amplitude vanish at LO (Sutherland's theorem)

...and is still small at higher orders...

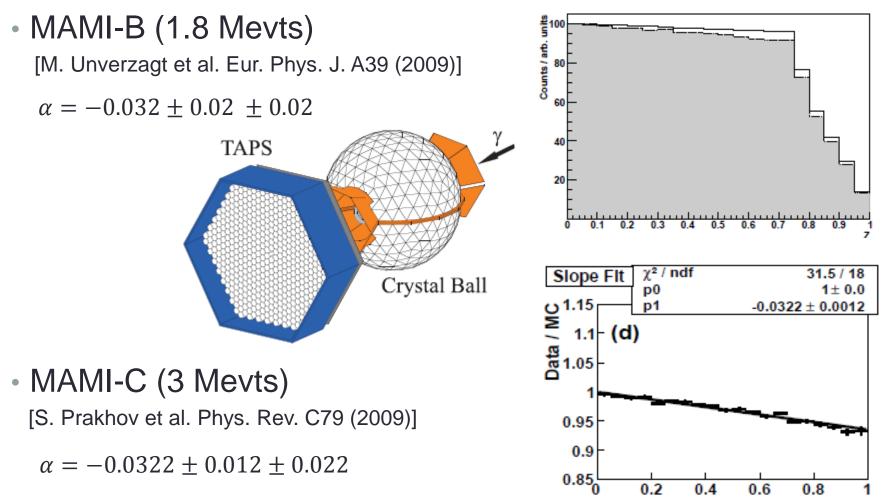
[Baur et al. Nucl. Phys.. B460 (1996)] [Ditsche et al. Eur. Phys. J. C60 (2009)]


• So it can be used to constrain the light quark masses !


$$A(s,t,u) \propto \frac{m_d - m_u}{(m_s - \widehat{m})}$$

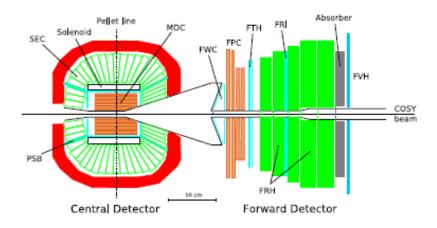
$$\eta \rightarrow 3\pi^0$$

• Fit to the symmetrized Dalitz plot:

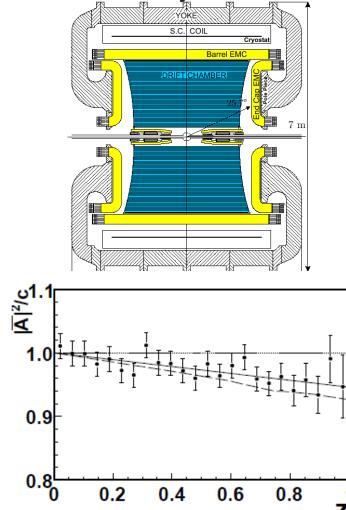

 $|A(s,t,u)|^2 \propto 1 + 2\alpha z$

$\eta \rightarrow 3\pi^0$ results

Intense and widespread experimental activity

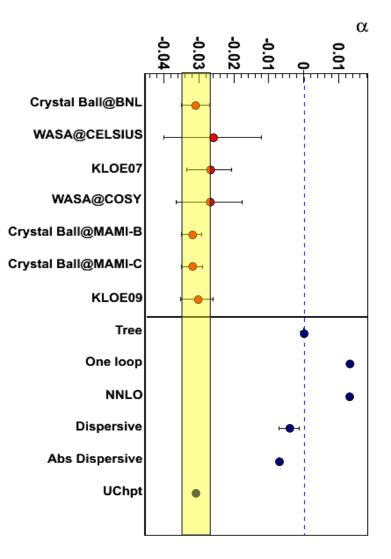

 $Z_{\eta \rightarrow 3\pi^0}$

$\eta \rightarrow 3\pi^0$ results


- Intense and challenging experimental activity
- KLOE (600 kevts)

[F. Ambrosino et al. Phys. Lett. B694 (2010)]

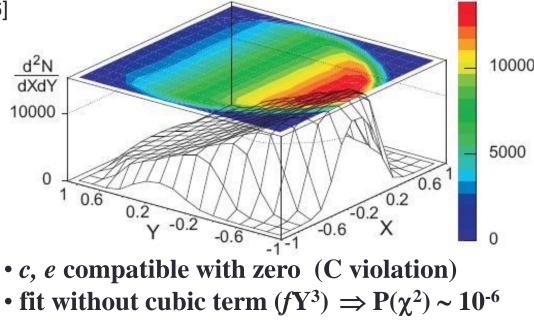
 $\alpha = -0.0301 \pm 0.035 \quad {}^{+0.022}_{-0.0035}$



WASA@COSY (120 kevts)
 [C. Adolph et al. Phys. Lett. B677 (2009)]
 α = -0.027 ± 0.008 ± 0.005

$\eta \rightarrow 3\pi^0$ summary

- An experimental success !
- Remarkable agreement of all experiments
- But...measured value far from Chiral predictions: how reliable is a quark mass extraction from the width ?
- New results using dispersive or NREFT approach -> see later


$$\eta \rightarrow \pi^+ \pi^- \pi^0$$

• Fit to the full 2D Dalitz plot:

$$\begin{split} |A(s,t,u)|^2 &\propto 1 + ay + by^2 + cx + dx^2 + exy + fy^3 + \cdots \\ x &= \sqrt{3} \frac{T_+ - T_-}{Q} \quad ; \quad y = \frac{3T_0}{Q} - 1 \end{split}$$

Only one precision measurement by KLOE (1.3 Mevts)
 [F. Ambrosino et al. JHEP 05(2008)006]

а	-1.090 (5) (+ 8) (-19)
b	0.124 (6) (10)	
С	0.002 (3) (1)	
d	0.057 (6) (+7) (-16)	
е	-0.006 (7) (5) (-3)	
f	0.14 (1) (2)	
P(χ ²)		0,73

$$\eta \rightarrow \pi^+ \pi^- \pi^0 vs \eta \rightarrow 3\pi^0$$

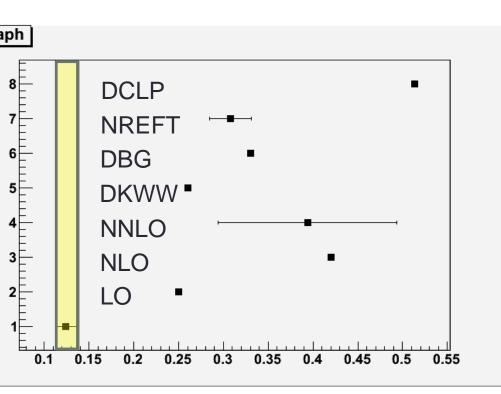
 Assuming I = 1 final state, in the first order in isospin breaking the two processes can be related. An important relation is found between the Dalitz parameters:

$$\alpha = \frac{1}{4} \left(b + d - \frac{a^2}{4} \right) - \frac{(Im \,\bar{a})^2}{4}$$

[J. Bijnens and K. Ghorbani JHEP 11(2007)030]

where \bar{a} is the linear complex coefficient of the expansion of the amplitude for the charged mode:

$$A(s,t,u) \propto (1 + \bar{a}y + \bar{b}y^2 + \bar{d}x^2 + \dots)$$

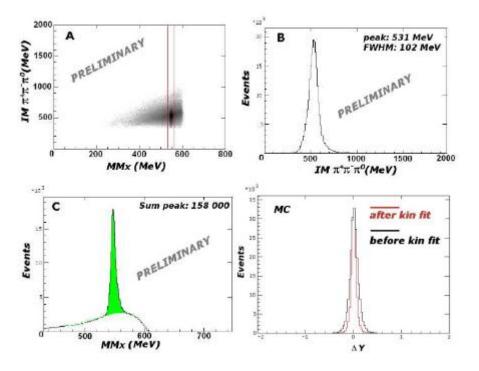

• Exploiting this relation between the amplitudes, and considering $\pi\pi$ rescattering effect at LO KLOE finds an indirect determination of α :

$$\alpha = -0.038 \pm 0.03 (stat.)$$
 $^{+0.012}_{-0.008}(syst)$
[F. Ambrosino et al. JHEP 05(2008)006]

A puzzle?

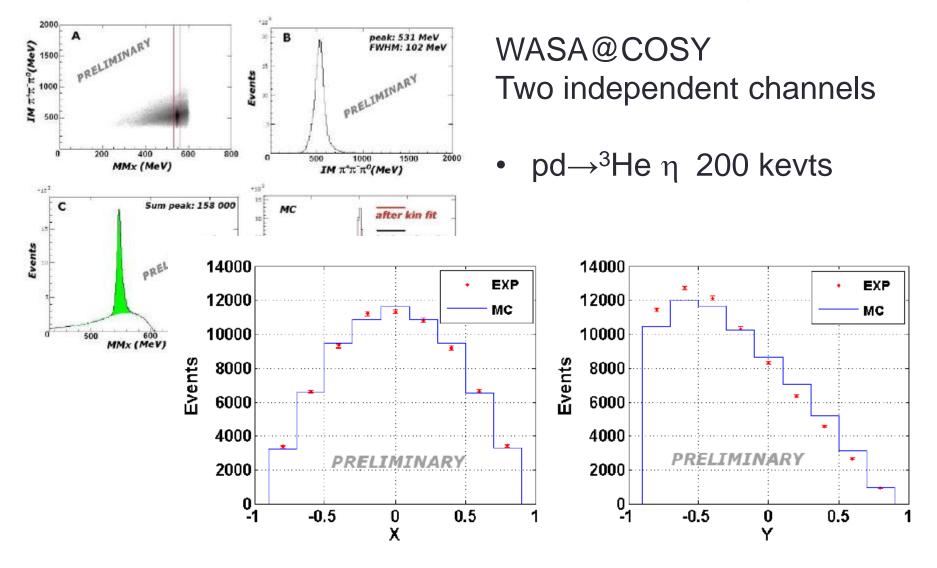
- It has been recently argued, in the NREFT approach that using ππ rescattering at NLO the charged result by KLOE would imply α = -0.062(7), in contrast with experiminal evidence.
 [S.P. Schneider et al. JHEP 1102(2011)028]
- The KLOE data agree very well with Im $(\bar{a}) = 0$ which is incompatible with NREFT calculation of pion rescattering at NLO. This *is* a puzzle !
- However, the NREFT approach, which finds a quite reasonable value for α = -0.025, fails in the quadratic slope in y, i.e. b

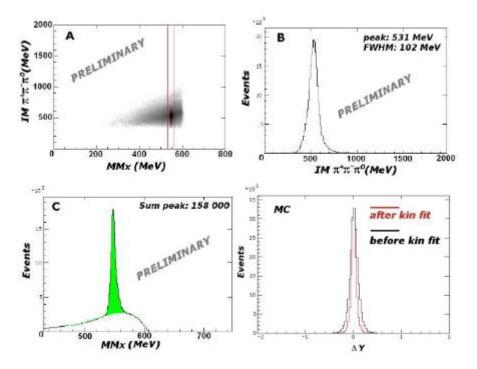
Is b the true villain?



NLO: [Gasser and Leutwyler Nucl. Phys.B250 (1985)] NNLO: [Bijnens and Ghorbani JHEP 11(2007)030] DKWW: [Kambor et al. Nucl. Phys B 465 (1996)] DBG: [Bijnens and Gasser Phys. Scripta T99 (2002)] NREFT: [S.P. Schneider et al. JHEP 1102(2011)028] DCLP:[G. Colangelo et al. arXiv:1102.4999]

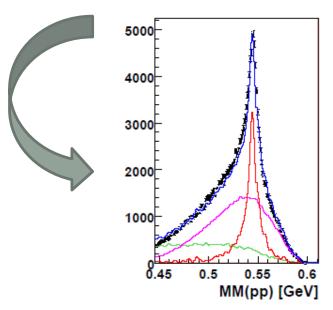
- The problem in reproducing the value of α (and even its sign) is pretty evident.
- This is strictly linked to the fact that
 - ChPT (LO, NLO, NNLO)
 - Dispersive (matched to ChPT)
 - NREFT

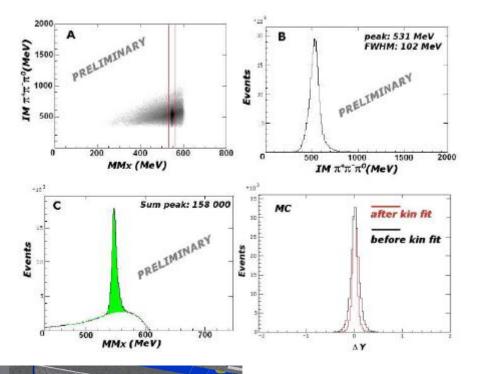

are always far from experiment for b


 The only precision measurement, disagrees with CHPT calculations: new precise measurements welcome

WASA@COSY Two independent channels

• $pd \rightarrow ^{3}He \eta$ 200 kevts

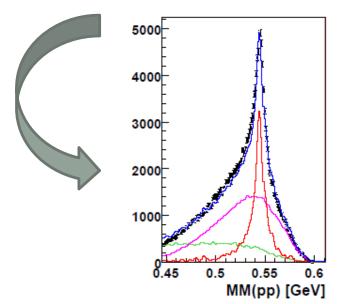


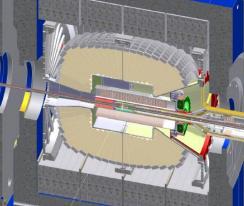


WASA@COSY Two independent channels

• $pd \rightarrow ^{3}He \eta$ 200 kevts

• pp
$$\rightarrow$$
 pp η 10 Mevts (!)




..and after the upgrade ELSA and MAMI can enter the game, too...

WASA@COSY Two independent channels

• $pd \rightarrow ^{3}He \eta$ 200 kevts

• pp
$$\rightarrow$$
 pp η 10 Mevts (!)

1177741

 It is usual to refer to old measurement in the charged channel as follows:

Exp.	a	b	d
KLOE [50]	$-1.090\pm0.005^{+0.008}_{-0.019}$	$0.124 \pm 0.006 \pm 0.010$	$0.057 \pm 0.006 ^{+0.007}_{-0.016}$
Crystal Barrel [51]	-1.22 ± 0.07	0.22 ± 0.11	$0.06\pm0.04~(\mathrm{input})$
Layter et al. [52]	-1.08 ± 0.014	0.034 ± 0.027	0.046 ± 0.031
Gormley et al. [53]	-1.17 ± 0.02	0.21 ± 0.03	0.06 ± 0.04

 This is indeed intriguing, since the value of b seems very controversial. But let us have a closer look at the original papers...

 It is usual to refer to old measurement in the charged channel as follows:

Exp.	a	b	d
KLOE [50]	$-1.090\pm0.005^{+0.008}_{-0.019}$	$0.124 \pm 0.006 \pm 0.010$	$0.057 \pm 0.006^{+0.007}_{-0.016}$
Crystal Barrel [51]	-1.22 ± 0.07	0.22 ± 0.11	$0.06\pm0.04~(\mathrm{input})$
Lavter et al. [52]	-1.08 ± 0.014	0.034 ± 0.027	0.046 ± 0.031
Gormley et al. [53]	-1.17 ± 0.02	0.21 ± 0.03	0.06 ± 0.04

- This is indeed intriguing, since the value of b seems very controversial. But let us have a closer look at the original papers...
 - 1. Layter (80 kevts) is not sensitive to quadratic slopes

 It is usual to refer to old measurement in the charged channel as follows:

Exp.	a	b	d
KLOE [50]	$-1.090\pm0.005^{+0.008}_{-0.019}$	$0.124 \pm 0.006 \pm 0.010$	$0.057 \pm 0.006 ^{+0.007}_{-0.016}$
Crystal Barrel [51]	-1.22 ± 0.07	0.22 ± 0.11	0.06 ± 0.04 (input)
Layter et al. [52]	-1.08 ± 0.014	0.034 ± 0.027	0.046 ± 0.031
Gormley et al. [53]	-1.17 ± 0.02	0.21 ± 0.03	0.06 ± 0.04

- This is indeed intriguing, since the value of b seems very controversial. But let us have a closer look at the original papers...
 - 1. Layter (80 kevts) is not sensitive to quadratic slopes
 - 2. So is Crystal Barrel with only 3kevts. When fitting only linear slope they get a = -1.10(4)

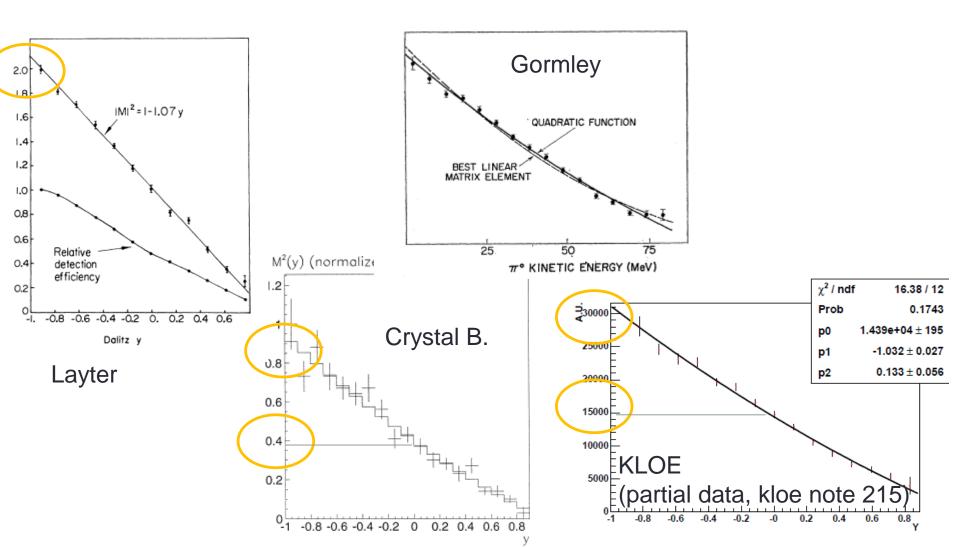
 It is usual to refer to old measurement in the charged channel as follows:

Exp.	a	b	d
KLOE [50]	$-1.090\pm0.005^{+0.008}_{-0.019}$	$0.124 \pm 0.006 \pm 0.010$	$0.057 \pm 0.006 ^{+0.007}_{-0.016}$
Crystal Barrel [51]	-1.22 ± 0.07	0.22 ± 0.11	$0.06\pm0.04~(\mathrm{input})$
Layter et al. [52]	-1.08 ± 0.014	0.034 ± 0.027	0.046 ± 0.031
Gormley et al. [53]	-1.17 ± 0.02	0.21 ± 0.03	0.06 ± 0.04

- This is indeed intriguing, since the value of b seems very controversial. But let us have a closer look at the original papers...
 - 1. Layter (80 kevts) is not sensitive to quadratic slopes
 - 2. So is Crystal Barrel with only 3kevts. When fitting only linear slope they get a = -1.10(4)
 - 3. Gormley only uses full 2D fit to look for xy effects...

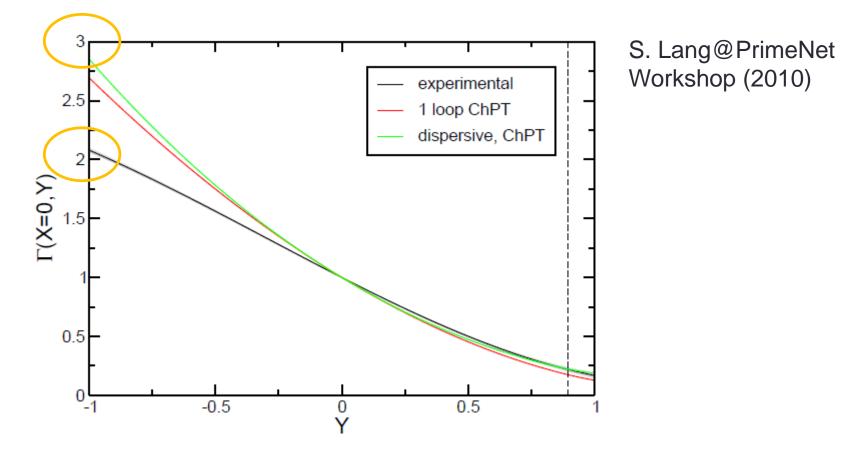
 It is usual 	The results of Table I indicate that we can integrate the matrix element over the Dalitz x coordinate and obtain a function which depends only upon y . To study the y dependence of the Dalitz-plot density, we have fitted the π^0 energy spectrum to	
channel	$M(y) = 1 + \alpha y. \tag{9}$	
Exp.	We find that	
KLOE [5	$Re\alpha = -0.58 \pm 0.01$, $Im\alpha = 0.00 \pm 0.08$,	+0.007 -0.016
Crystal Barr	and $\chi^2 = 51$ for 29 degrees of freedom.	nput)
Layter et al	Although these values of $Re\alpha$ and $Im\alpha$ agree with the)31
Gormley et a	results of previous experiments, ⁷ the value of χ^2 suggests)4
	that a higher-order expansion of the matrix element is required to represent our data. The simplest Dalitz-plot density resulting from a	/ery
controve	nonlinear matrix element is	inal
papers	$ \frac{M(y) ^2 = 1 + ay + by^2}{2}, \tag{10}$	
1. Layte	where a and b are independent real coefficients. Fitting	
2. So is	the π^0 energy spectrum to Eq. (10) yields	ar
slope	$a = -1.15 \pm 0.02$, $b = 0.16 \pm 0.03$,	
3. Gorm	with $\chi^2 = 36.8$ for 29 degrees of freedom. The π^8 energy	

Old vs new results

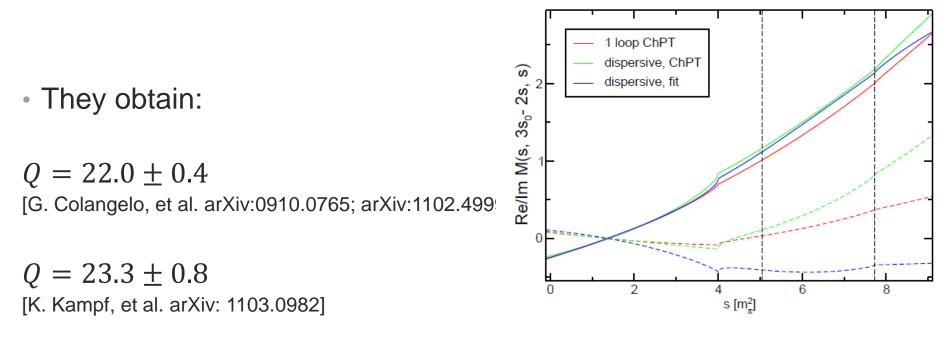

 I believe that a more coherent way to compare results on the charged channel is:

Ехр	а	b	d
KLOE	-1.090(-20)(+9)	0.124 (12)	0.057 (+9)(-17)
Crystal Barrel	-1.10 (4)	-	-
Layter	-1.08 (14)	-	-
Gormley	-1.15 (2)	0.16 (3)	-

• This is reflected in the quite similar behaviour of all data...


Old vs new results

• The 1D projections along y agree reasonably...


Old & new results vs theory

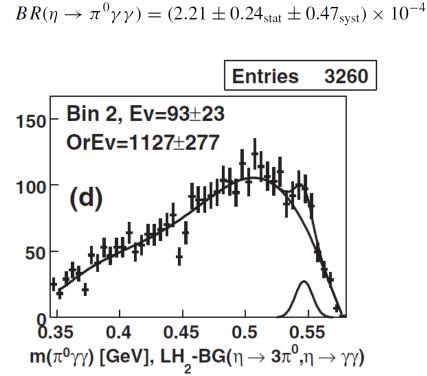
 A quad slope of 0.2-0.3 would have a dramatic effect on y projected event count ! Very difficult to account for a large quadratic slope from the current experimental picture...

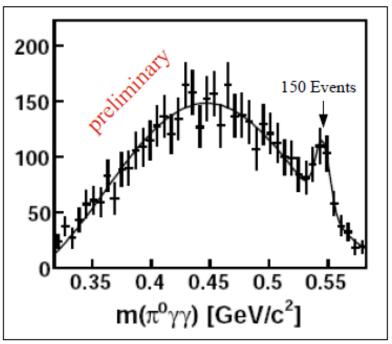
What really matters..

- ... is obviously the value of quark mass ratio $Q^2 = \left(\frac{m_s^2 \hat{m}^2}{m_d^2 m_u^2}\right)$
- New approaches: *fit* dispersive parametrizations to KLOE data with normalization from ChPT (e.g. at the Adler zero) and extract quark mass ratios.

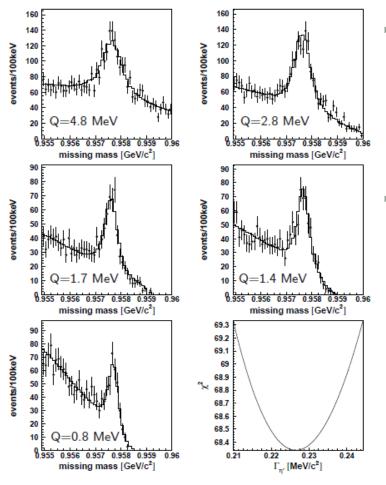
What really matters..

- ... is obviously the value of quark mass ratio $Q^2 = \left(\frac{m_s^2 \hat{m}^2}{m_d^2 m_u^2}\right)$
- New approaches: *fit* dispersive parametrizations to KLOE data with normalization from ChPT (e.g. at the Adler zero) and extract quark mass ratios.


What really matters..


- ... is obviously the value of quark mass ratio $Q^2 = \left(\frac{m_s^2 \hat{m}^2}{m_d^2 m_u^2}\right)$
- New approaches: *fit* dispersive parametrizations to KLOE data with normalization from ChPT (e.g. at the Adler zero) and extract quark mass ratios.

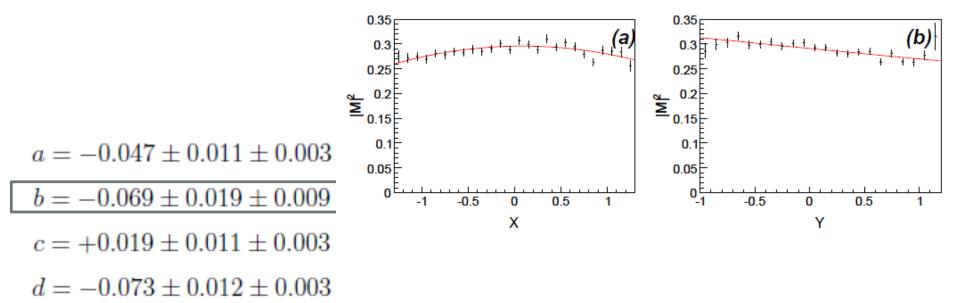
$$\eta \rightarrow \pi^0 \gamma \gamma$$


- $\eta \rightarrow \pi^0 \gamma \gamma$ is a pure p⁶ process
- Very very hard from the experimental point of view
- Recent reanalysis of CB@BNL and preliminary result from new data from MAMI:

 $BR(\eta \rightarrow \pi^0 \gamma \gamma) = (2.25 \pm 0.46_{stat} \pm 0.17_{syst}) \cdot 10^{-4} (preliminary)$

η ' properties

Recently very interesting result for the η ' total width from COSY-11 without relying on intermediate BR


Will be useful to improve understanding of the gluonium content and to extract information from the Dalitz plot analyses:

$$\Gamma_{\eta \prime} = 0.226 \pm 0.017 (stat.) \pm 0.014 (syst.) MeV/c^2$$

[E. Czerwinski et al. Phys. Rev. Lett. 105 (2010)]

η ' dynamics

BESIII has measured with unprecedented accuracy the Dalitz plot parameters of η'→ηππ using 40k events showing again the inadequateness of the so-called linear parameterization.
 [M.Ablikim et al. Phys. Rev. D83 (2011)]

η ' dynamics

 $a = -0.047 \pm$

 $b = -0.069 \pm$

 $c = +0.019 \pm$

 $d = -0.073 \pm$

- BESIII has measured with unprecedented accuracy the Dalitz plot parameters of η'→ηππ using 40k events showing again the inadequateness of the so-called linear parameterization.
 [M.Ablikim et al. Phys. Rev. D83 (2011)]
- The value of the linear coefficient a is not in good agreement with previous measurement by VES

[V. Dorofeev et al.Phys.	Lett. B 651(2007)]
--------------------------	--------------------

0.011 ± 0.003	Par. VES
0.019 ± 0.009	a -0.127 ± 0.018
0.019 ± 0.009	b -0.106 ± 0.032
0.011 ± 0.003	5 0.100 ± 0.002
0.012 ± 0.003	c $+0.015 \pm 0.018$
	d -0.082 ± 0.019

η' dynamics

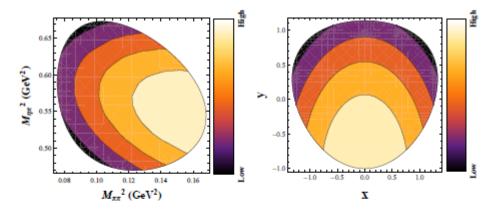


Figure 1: Dalitz plot distribution of $\eta' \rightarrow \eta \pi \pi$ using Eq. (3.12) supplemented by rescattering effects through Eq. (3.18), in terms of the invariant masses $M_{\pi\pi}^2$ and $M_{\eta\pi}^2$ (left) and the kinematical variables X and Y (right). Larger values are shown lighter.

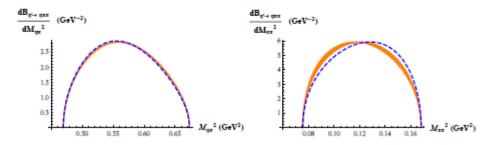
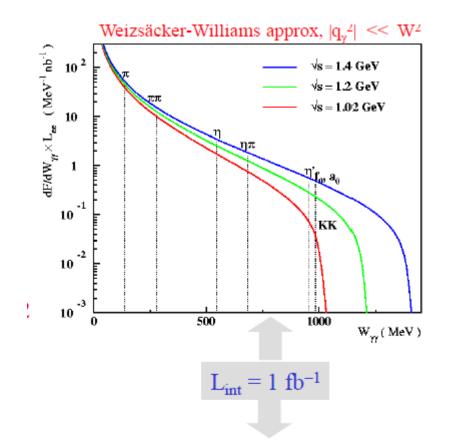
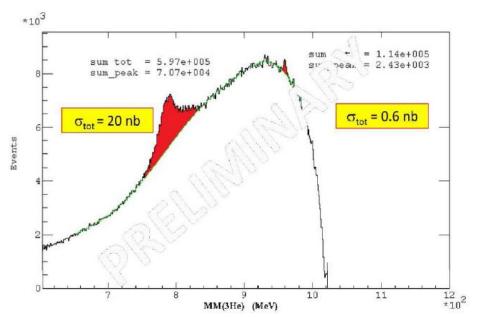
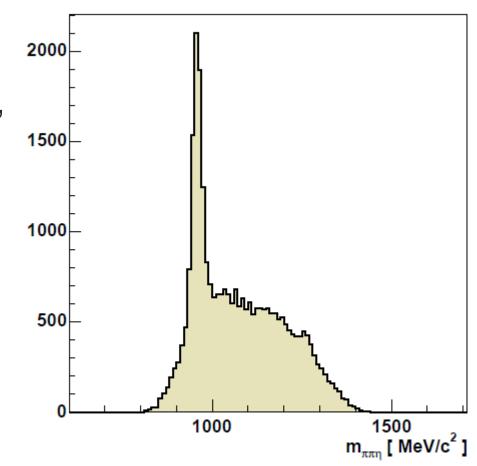



Figure 2: $M_{\eta\pi}^2$ (left) and $M_{\pi\pi}^2$ (right) invariant mass spectra for the differential branching ratio. The tree-level large- N_C ChPT prediction from Eq. (8.12) —blue dashed line— is compared to its unitarized counterpart via Eq. (8.18) —solid orange band.

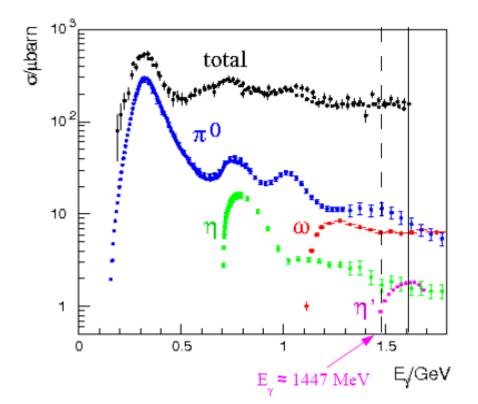
 A new detailed study of the system has been performed in the framework of large Nc and RChPT including also X²Y and X⁴ terms of the expansion


[R. Escribano et al. JHEP 1105 (2011)094]

- A lot of experimental activity is planned in the next future:
- KLOE/KLOE2 (tagger, γγ fusion, see C. Di Donato's talk)



$\sqrt{s}({ m GeV})$	π^0	η	η'
1.02	$4.1{ imes}10^5$	$1.2{ imes}10^5$	$1.9{ imes}10^4$
2.4	$7.3{ imes}10^5$	$3.7{ imes}10^5$	$3.6{ imes}10^5$


- A lot of experimental activity is planned in the next future:
- KLOE/KLOE2 (tagger, γγ fusion, see C. Di Donato's talk)
- WASA@COSY (in pp->pp η ')

- A lot of experimental activity is planned in the next future:
- KLOE/KLOE2 (tagger, γγ fusion, see C. Di Donato's talk)
- WASA@COSY (in pp->ppη')
- ELSA (TPC inner tracker + fast trigger upgrade)

- A lot of experimental activity is planned in the next future:
- KLOE/KLOE2 (tagger, γγ fusion, see C. Di Donato's talk)
- WASA@COSY (in pp->ppη')
- ELSA (TPC inner tracker + fast trigger upgrade)
- MAMI (new end point trigger + TPC inner tracker)

Chiral Dynamics and SM tests

- Extending the domain of precise calculations and measurements for hadronic observalbles is crucial for interpreting results of next generation precision experiments and challenge the SM
- One example is the success of Vus precise determination
- Another important example:

$$R_{K} = \frac{\Gamma(K^{\pm} \to e^{\pm} v_{e})}{\Gamma(K^{\pm} \to \mu^{\pm} v_{\mu})} = \frac{m_{e}^{2}}{m_{\mu}^{2}} \left(\frac{m_{K}^{2} - m_{e}^{2}}{m_{K}^{2} - m_{\mu}^{2}}\right)^{2} \left(1 + \delta R_{QED}\right) = (2.477 \pm 0.001) \cdot 10^{-5}$$

[M. Finkemeier, Phys. Lett. B 387 (1996)]

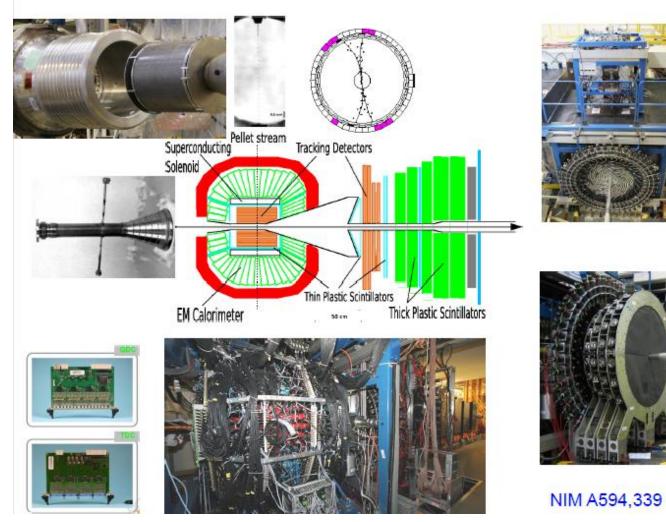
[V. Cirigliano and I Rosell, JHEP 0710:005 (2007)]

To be compared with the recent measurement by NA62 collaboration:

$$R_K = (2.487 \pm 0.013) \cdot 10^{-5}$$

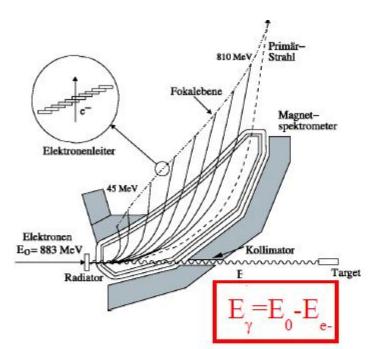
[C. Lazzeroni et al. Phys. Lett. B 98 (2011)]

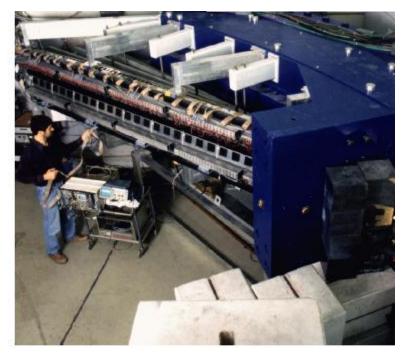
Conclusion

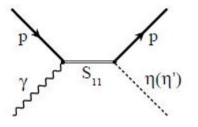

- $\pi\pi$ scattering show us the potential of Chiral Dynamics as a precision framework
- The determination of η dynamics is entering the precision era: this is a challenge for both theory and experiments, but is worth the fee
- More measurements next to come, with the η^{\prime} playing an increasingly important role in the near future

THANK YOU

SPARE SLIDES

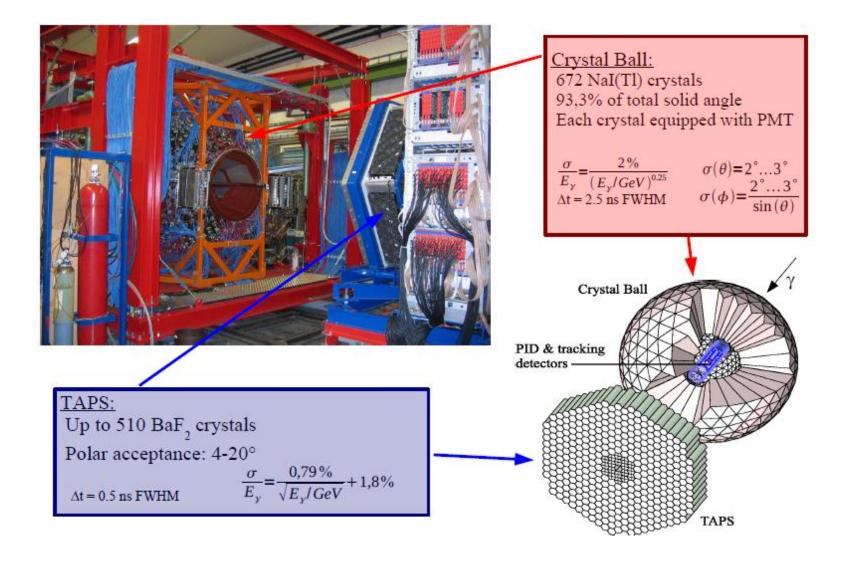

WASA @ COSY

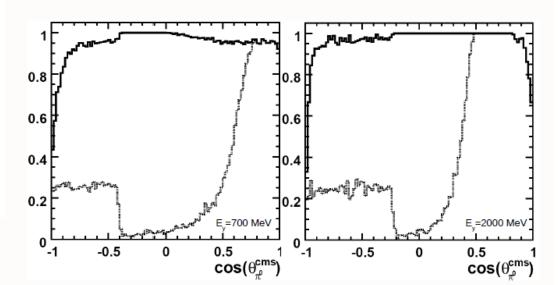

WASA detector



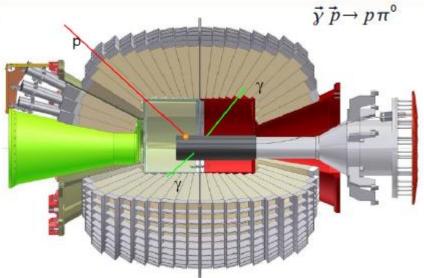
MAMI

MAMI-C Parameters: 1604 MeV σ_E<0.1 MeV High current (110μA) High polarisation (80%) Duty factor 100% ~7000 h/year running experiments




High energy resolution: $\Delta E_{\gamma} \approx 2 \text{MeV}$ at $E_{e} = 883 \text{ MeV}$ $\Delta E_{\gamma} \approx 4 \text{MeV}$ at $E_{e} = 1604 \text{ MeV}$ Tagging range: 4.7 to 93% of E_{γ}

CB + TAPS @ MAMI



CB-ELSA

Trigger efficiency of the Crystal Barrel Detector for $yp \rightarrow p\pi^0$ (solid) and $yn \rightarrow n\pi^0$ (dashed)

- Crystal Barrel detector 1230 Csl crystals with photodiode readout
- Inner-detector, cylinder of 513 scintillating fibres
- Forward detector 90 Csl crystals with photomultiplier readout, 12°-30°
- MiniTAPS calorimeter covering 1.2°-12° with 216 BaF crystals

