Heavy baryon spectrum new heavy exotics and isospin breaking

Marek Karliner

with B. Keren-Zur, H.J. Lipkin, J. Rosner and N. Tornqvist

Hadron 2011, Munchen, June 17, 2011

## Outline

- spin-spin interaction between quarks "color magnetic"
- <u>same</u> constituent quark masses in mesons and baryons
- known baryons + mesons → predictions for new heavy baryons: <u>magnetic moments & masses</u>
- apps to heavy exotic QQqq mesons  $\rightarrow$  predictions for Belle
- Belle 5/2001: two Z\_b(I=1) exotic mesons ~@ B+B\*, B\*+B\*
- $\rightarrow$  additional, more deeply bound states with I=0

# Constituent Quark Models (CQM)

- QCD describes hadrons as valence quarks in a sea of gluons and q-qbar pairs.
- at low E, χSB
- $\rightarrow$  quark constituent mass
- hadron can be considered as a bound state of constituent quarks.
- Sakharov-Zeldovich formula:

$$M = \sum_{i} m_{i}$$

 the binding & kinetic energies "swallowed" by the constituent quarks masses.





# Color Hyperfine (HF) interaction

 1st correction – color hyperfine (chromo-magnetic) interaction

$$M = \sum_{i} m_{i} + \sum_{i < j} V^{HF}_{ij}$$
$$V^{HF(QCD)}_{ij} = v_{0} \left( \vec{\lambda}_{i} \cdot \vec{\lambda}_{j} \right) \frac{\vec{\sigma}_{i} \cdot \vec{\sigma}_{j}}{m_{i} m_{j}} \left\langle \psi \left| \delta \left( r_{i} - r_{j} \right) \psi \right\rangle \right.$$

- A contact interaction
- Analogous to the EM hyperfine interaction a product of the magnetic moments.

$$V^{HF(em)}{}_{ij} \propto \vec{\mu}_i \cdot \vec{\mu}_j = e^2 \frac{\vec{\sigma}_i \cdot \vec{\sigma}_j}{m_i m_j} \langle \psi | \delta(r_i - r_j) | \psi \rangle$$

• In QCD, SU(3) generators take the place of the electric charge.



# Constituent Quark Model: caveat emptor

- a low energy limit, phenomenological model
- still awaiting derivation from QCD
- far from providing a full explanation of the hadronic spectrum, but it provides excellent predictions for mass splittings and magnetic moments
- assumptions:
  - HF interaction considered as a perturbation
  - $\rightarrow$  does not change the wave function
  - same masses for quarks inside mesons and baryons.
  - no 3-body effects.

# constituent quark mass ratios

• example II:

$$M_{K^{*}} - M_{K} = v_{0} \frac{\left(\vec{\lambda}_{u} \cdot \vec{\lambda}_{s}\right)}{m_{u}m_{s}} \left[ \left(\vec{\sigma}_{u} \cdot \vec{\sigma}_{s}\right)_{K^{*}} - \left(\vec{\sigma}_{u} \cdot \vec{\sigma}_{s}\right)_{K} \right] \left\langle \psi \left| \delta(r) \right| \psi \right\rangle$$
$$= 4v_{0} \frac{\left(\vec{\lambda}_{u} \cdot \vec{\lambda}_{s}\right)}{m_{u}m_{s}} \left\langle \psi \left| \delta(r) \right| \psi \right\rangle$$

• extracting quark masses ratio:

$$\frac{M_{K^*} - M_{K}}{M_{D^*} - M_{D}} = \frac{4v_0 \frac{\left(\vec{\lambda}_u \cdot \vec{\lambda}_{s}\right)}{m_u m_s} \langle \psi | \delta(r) | \psi \rangle}{4v_0 \frac{\left(\vec{\lambda}_u \cdot \vec{\lambda}_{c}\right)}{m_u m_c}} \langle \psi | \delta(r) | \psi \rangle \approx \frac{m_c}{m_s}$$

## color hyperfine splitting in baryons

- The  $\Sigma$  (uds) baryon HF splitting:
  - $-\Sigma^*$ : total spin 3/2 u and d at relative spin 1
  - $-\Sigma$ : isospin 1
    - Symmetric under exchange of u and d
    - u and d at relative spin 1



$$\left(\vec{\sigma}_{u}\cdot\vec{\sigma}_{d}\right)_{\Sigma^{*}}=\left(\vec{\sigma}_{u}\cdot\vec{\sigma}_{d}\right)_{\Sigma}$$

· the 'ud' pair does not contribute to the HF splitting

$$M_{\Sigma^*} - M_{\Sigma} = 6v_0 \frac{\left(\vec{\lambda}_u \cdot \vec{\lambda}_s\right)}{m_u m_s} \langle \psi | \delta(r_{ij}) \psi \rangle$$

Hadron 2011, June 17

M. Karliner, heavy baryons & exotics

Quark mass ratio from HF splittings in mesons and baryons

$$\left(\frac{m_c}{m_s}\right)_{Bar} = \frac{M_{\Sigma^*} - M_{\Sigma}}{M_{\Sigma^*_c} - M_{\Sigma_c}} = 2.84 = \left(\frac{m_c}{m_s}\right)_{Mes} = \frac{M_{K^*} - M_K}{M_{D^*} - M_D} = 2.81$$

$$\left(\frac{m_c}{m_u}\right)_{Bar} = \frac{M_\Delta - M_p}{M_{\Sigma_c^*} - M_{\Sigma_c}} = 4.36 = \left(\frac{m_c}{m_u}\right)_{Mes} = \frac{M_\rho - M_\pi}{M_{D^*} - M_D} = 4.46$$

#### New type of mass relations with more heavy flavors

$$\begin{pmatrix} \frac{1}{m_u^2} - \frac{1}{m_u m_c} \\ \frac{1}{m_u^2} - \frac{1}{m_u m_s} \end{pmatrix}_{Bar} = \frac{M_{\Sigma_c} - M_{\Lambda_c}}{M_{\Sigma} - M_{\Lambda}} = 2.16 \approx \begin{pmatrix} \frac{1}{m_u^2} - \frac{1}{m_u m_c} \\ \frac{1}{m_u^2} - \frac{1}{m_u m_s} \end{pmatrix}_{Mes} = \frac{(M_{\rho} - M_{\pi}) - (M_{D^*} - M_D)}{(M_{\rho} - M_{\pi}) - (M_{K^*} - M_K)} = 2.10$$

M. Karliner, heavy baryons & exotics

Hadron 2011, June 17

8

# Similar relation for bottom baryons $\rightarrow$ prediction for $\Sigma_b$ mass

$$\frac{M_{\Sigma_b} - M_{\Lambda_b}}{M_{\Sigma} - M_{\Lambda}} = \frac{(M_{\rho} - M_{\pi}) - (M_{B^*} - M_B)}{(M_{\rho} - M_{\pi}) - (M_{K^*} - M_K)} = 2.51$$

$$\blacktriangleright M_{\Sigma_b} - M_{\Lambda_b} = 194 \,\mathrm{MeV}$$

(MK & Lipkin, hep-ph/0307243)

CDF obtained the masses of the  $\Sigma_b^-$  and  $\Sigma_b^+$  from the decay  $\Sigma_b \to \Lambda_b + \pi$  by measuring the corresponding mass differences

$$M(\Sigma_b^-) - M(\Lambda_b) = 195.5^{+1.0}_{-1.0} \text{ (stat.)} \pm 0.1 \text{ (syst.)} \text{ MeV}$$

 $M(\Sigma_b^+) - M(\Lambda_b) = 188.0^{+2.0}_{-2.3} \text{ (stat.)} \pm 0.1 \text{ (syst.)} \text{ MeV}$ 

with isospin-averaged mass difference  $M(\Sigma_b) - M(\Lambda_b) = 192$  MeV.



also prediction for spin splitting between  $\Sigma_b^*$  and  $\Sigma_b$ 

$$M(\Sigma_{b}^{*}) - M(\Sigma_{b}) = \frac{M(B^{*}) - M(B)}{M(K^{*}) - M(K)} \cdot [M(\Sigma^{*}) - M(\Sigma)] = 22 \text{ MeV}$$

to be compared with 21 MeV from the isospin-average of CDF measurements

$$M(\Sigma_b^{*-}) = 5837^{+2.1}_{-1.9} (\text{stat.}) \pm 1.7 (\text{syst.}) \text{ MeV}$$

$$M(\Sigma_b^{*+}) = 5829^{+1.6}_{-1.8} (\text{stat.}) \pm 1.7 (\text{syst.}) \text{ MeV}$$

new result from CDF at Hadron 2011: 20 MeV

### Magnetic moments of heavy baryons

- In  $\Lambda$ ,  $\Lambda_c$  and  $\Lambda_b$  light q coupled to spin zero
- $\rightarrow$  mag. moments determined by s,c,b moments
- quark mag. moments proportional to their

chromomagnetic moments

M. Karliner, heavy baryons & exotics

Predicting the mass of  $\Xi_{\mathbf{Q}}$  baryons

 $\Xi_{\mathbf{Q}}$ : Qsd or Qsu. (sd), (sd) in spin-0

$$\begin{array}{l} \rightarrow \Xi_{\mathbf{q}} \text{ mass given by} \\ \Xi_{q} = m_{q} + m_{s} + m_{u} - \frac{3v \langle \delta(r_{us}) \rangle}{m_{u} m_{s}} \end{array}$$

Can obtain (bsd) mass from (csd) + shift in HF:

$$\Xi_b = \Xi_c + (m_b - m_c) - \frac{3v}{m_u m_s} \left( \langle \delta(r_{us}) \rangle_{\Xi_b} - \langle \delta(r_{us}) \rangle_{\Xi_c} \right)$$

several options for obtaining  $m_b - m_c$  from data:

$$m_b-m_c=\Lambda_b-\Lambda_c=3333.2\pm1.2$$
 MeV

$$m_b - m_c = \left(rac{2\Sigma_b^* + \Sigma_b + \Lambda_b}{4} - rac{2\Sigma_c^* + \Sigma_c + \Lambda_c}{4}
ight) = 3330.4 \pm 1.8$$
 MeV

- The  $\Xi_0(Qsq)$  baryons contain an s quark
- Q mass differences depend on the spectator
- optimal estimate from mesons which contain both s and Q:

$$m_b - m_c = \left(\frac{3B_s^* + B_s}{4} - \frac{3D_s^* + D_s}{4}\right) = 3324.6 \pm 1.4$$
 MeV

M. Karliner, heavy baryons & exotics

#### Predictions for masses of $\Xi_b$ baryons

Marek Karliner<sup>a</sup>, Boaz Keren-Zur<sup>a</sup>, Harry J. Lipkin<sup>a,b,c</sup>, and Jonathan L. Rosner<sup>d</sup>

<sup>a</sup> School of Physics and Astronomy Raymond and Beverly Sackler Faculty of Exact Sciences Tel Aviv University, Tel Aviv 69978, Israel

<sup>b</sup> Department of Particle Physics Weizmann Institute of Science, Rehovoth 76100, Israel

<sup>c</sup> High Energy Physics Division, Argonne National Laboratory Argonne, IL 60439-4815, USA

<sup>d</sup> Enrico Fermi Institute and Department of Physics University of Chicago, 5640 S. Ellis Avenue, Chicago, IL 60637, USA

#### ABSTRACT

The recent observation by CDF of  $\Sigma_b^{\pm}$  (*uud* and *ddb*) baryons within 2 MeV of the predicted  $\Sigma_b - \Lambda_b$  splitting has provided strong confirmation for the theoretical approach based on modeling the color hyperfine interaction. We now apply this approach to predict the masses of the  $\Xi_b$  family of baryons with quark content *usb* and *dsb* – the ground state  $\Xi_b$  at 5790 to 5800 MeV, and the excited states  $\Xi'_b$  and  $\Xi^*_b$ . The main source of uncertainty is the method used to estimate the mass difference  $m_b - m_c$ from known hadrons. We verify that corrections due to the details of the interquark potential and to  $\Xi_b - \Xi'_b$  mixing are small. Observation and Mass Measurement of the Baryon  $\Xi_{h}^{-}$ 

#### (CDF Collaboration)

We report the observation and measurement of the mass of the bottom, strange baryon  $\Xi_b^-$  through the decay chain  $\Xi_b^- \to J/\psi \Xi^-$ , where  $J/\psi \to \mu^+ \mu^-$ ,  $\Xi^- \to \Lambda \pi^-$ , and  $\Lambda \to p \pi^-$ . A signal is observed whose probability of arising from a background fluctuation is  $6.6 \times 10^{-15}$ , or 7.7 Gaussian standard deviations. The  $\Xi_b^-$  mass is measured to be 5792.9 ± 2.5(stat) ±1.7(syst) MeV/c^2.



#### Predictions for other bottom baryons

with B.Keren-Zur, H.J. Lipkin and J.L. Rosner

 $\Omega_b$  mass prediction

$$\frac{2\Omega_b^* + \Omega_b}{3} = \frac{2\Omega_c^* + \Omega_c}{3} + (m_b - m_c) \\ = \frac{2\Omega_c^* + \Omega_c}{3} + \frac{3B_s^* + B_s}{4} - \frac{3D_s^* + D_s}{4} \\ = 6068.6 \pm 2.6 \text{ MeV}$$

wavefunction correction  $\approx +2$  MeV.

HF splitting:  $m_b/m_c$  taken to be  $3.0 \pm 0.5$ .  $\Omega_b^* - \Omega_b = (\Omega_c^* - \Omega_c) \frac{m_c}{m_b} = 23.6 \pm 4.0 \text{ MeV}$ 

M. Karliner, heavy baryons & exotics

## $\Omega_b$ mass prediction

This gives the following mass predictions:

 $\Omega_b = 6052.1 \pm 5.6 \text{ MeV}$   $\Omega_b^* = 6082.8 \pm 5.6 \text{ MeV}$ 

Wavefunction corrections give a factor of 1.28, and a splitting of  $30 \pm 6$  MeV.

Work in progress:

- $\Xi_b$  isospin splitting
- $\Lambda_b$  and  $\Xi_b$  orbital excitations
- $\Xi_{bc}$  (bcu)
- Ξ<sub>cc</sub> (ccu)

#### Observation of the Doubly Strange b Baryon $\Omega_b^-$

#### D0 Collaboration

We report the observation of the doubly strange b baryon  $\Omega_b^-$  in the decay channel  $\Omega_b^- \to J/\psi \Omega^-$ , with  $J/\psi \to \mu^+ \mu^-$  and  $\Omega^- \to \Lambda K^- \to (p\pi^-)K^-$ , in  $p\bar{p}$  collisions at  $\sqrt{s} = 1.96$  TeV. Using approximately 1.3 fb<sup>-1</sup> of data collected with the D0 detector at the Fermilab Tevatron Collider, we observe  $17.8 \pm 4.9(\text{stat}) \pm 0.8(\text{syst}) \ \Omega_b^-$  signal events at a mass of  $6.165 \pm 0.010(\text{stat}) \pm 0.013(\text{syst})$  GeV. The significance of the observed signal is  $5.4\sigma$ , corresponding to a probability of  $6.7 \times 10^{-8}$  of it arising from a background fluctuation.

> M.K. @DIS'09: "D0: Ω\_b=6165 +/- 10 (stat) +/- 13(syst.) --- wrong"

M. Karliner, heavy baryons & exotics

#### Observation of the $\Omega_b^-$ Baryon and Measurement of the Properties of the $\Xi_b^-$ and $\Omega_b^-$ Baryons

#### CDF Collaboration

We report the observation of the bottom, doubly-strange baryon  $\Omega_b^-$  through the decay chain  $\Omega_b^- \to J/\psi \,\Omega^-$ , where  $J/\psi \to \mu^+ \mu^-$ ,  $\Omega^- \to \Lambda K^-$ , and  $\Lambda \to p \pi^-$ , using 4.2 fb<sup>-1</sup> of data from  $p\bar{p}$  collisions at  $\sqrt{s} = 1.96$  TeV, and recorded with the Collider Detector at Fermilab. A signal is observed whose probability of arising from a background fluctuation is  $4.0 \times 10^{-8}$ , or 5.5 Gaussian standard deviations. The  $\Omega_b^-$  mass is measured to be  $6054.4 \pm 6.8(\text{stat.}) \pm 0.9(\text{syst.})$  MeV/ $c^2$ . The lifetime of the  $\Omega_b^-$  baryon is measured to be  $1.13^{+0.53}_{-0.40}(\text{stat.}) \pm 0.02(\text{syst.})$  ps. In addition, for the  $\Xi_b^-$  baryon we measure a mass of 5790.9  $\pm 2.6(\text{stat.}) \pm 0.8(\text{syst.})$  MeV/ $c^2$  and a lifetime of  $1.56^{+0.27}_{-0.25}(\text{stat.}) \pm 0.02(\text{syst.})$  ps. Under the assumption that the  $\Xi_b^-$  and  $\Omega_b^-$  are produced with similar kinematic distributions to the  $\Lambda_b^0$  baryon, we find  $\frac{\sigma(\Xi_b^-)\mathcal{B}(\Xi_b^-\to J/\psi\Xi^-)}{\sigma(\Lambda_b^0)\mathcal{B}(\Lambda_b^0\to J/\psi\Lambda)} = 0.167^{+0.037}_{-0.025}(\text{stat.}) \pm 0.012(\text{syst.})$  and  $\frac{\sigma(\Omega_b^-)\mathcal{B}(\Omega_b^-\to J/\psi\Omega^-)}{\sigma(\Lambda_b^0)\mathcal{B}(\Lambda_b^0\to J/\psi\Lambda)} = 0.045^{+0.017}_{-0.012}(\text{stat.}) \pm 0.004(\text{syst.})$  for baryons produced with transverse momentum in the range of 6 - 20 GeV/c.

M. Karliner, heavy baryons & exotics



M. Karliner, heavy baryons & exotics



b-baryons spectrum - TH predictions vs EXP

M. Karliner, heavy baryons & exotics

Table 10: Comparison of predictions for b baryons with those of some other recent approaches [6, 10, 11] and with experiment. Masses quoted are isospin averages unless otherwise noted. Our predictions are those based on the Cornell potential.

|                               | Value in MeV |            |                  |                  |                      |  |
|-------------------------------|--------------|------------|------------------|------------------|----------------------|--|
| Quantity                      | Refs. [6]    | Ref. [10]  | Ref. [11]        | This work        | Experiment           |  |
| $M(\Lambda_b)$                | 5622         | 5612       | Input            | Input            | $5619.7 \pm 1.7$     |  |
| $M(\Sigma_b)$                 | 5805         | 5833       | Input            | _                | $5811.5 \pm 2$       |  |
| $M(\Sigma_b^*)$               | 5834         | 5858       | Input            | _                | $5832.7 \pm 2$       |  |
| $M(\Sigma_b^*) - M(\Sigma_b)$ | 29           | 25         | Input            | $20.0 \pm 0.3$   | $21.2^{+2.2}_{-2.1}$ |  |
| $M(\Xi_b)$                    | 5812         | $5806^{a}$ | Input            | 5790 - 5800      | $5792.9 \pm 3.0^{b}$ |  |
| $M(\Xi_b')$                   | 5937         | $5970^{a}$ | $5929.7 \pm 4.4$ | $5930\pm 5$      | _                    |  |
| $\Delta M(\Xi^b)^c$           | _            | _          |                  | $6.4 \pm 1.6$    | _                    |  |
| $M(\Xi_b^*)$                  | 5963         | $5980^{a}$ | $5950.3 \pm 4.2$ | $5959 \pm 4$     | _                    |  |
| $M(\Xi_b^*) - M(\Xi_b')$      | 26           | $10^a$     | $20.6 \pm 1.9$   | $29\pm6$         | _                    |  |
| $M(\Omega_b)$                 | 6065         | 6081       | $6039.1 \pm 8.3$ | $6052.1 \pm 5.6$ | _                    |  |
| $M(\Omega_b^*)$               | 6088         | 6102       | $6058.9 \pm 8.1$ | $6082.8 \pm 5.6$ | _                    |  |
| $M(\Omega_b^*) - M(\Omega_b)$ | 23           | 21         | $19.8 \pm 3.1$   | $30.7 \pm 1.3$   | _                    |  |
| $M(\Lambda_{b[1/2]}^{*})$     | 5930         | 5939       | _                | $5929 \pm 2$     | _                    |  |
| $M(\Lambda_{b[3/2]}^{*})$     | 5947         | 5941       | _                | $5940 \pm 2$     | _                    |  |
| $M(\Xi_{b[1/2]}^{*})$         | 6119         | 6090       | —                | $6106 \pm 4$     | _                    |  |
| $M(\Xi_{b[3/2]}^*)$           | 6130         | 6093       | _                | $6115 \pm 4$     | _                    |  |

<sup>*a*</sup>Value with configuration mixing taken into account; slightly higher without mixing. <sup>*b*</sup>CDF [13] value of  $M(\Xi_b^-)$ . <sup>*c*</sup>M(state with *d* quark) – M(state with *u* quark).

M. Karliner, heavy baryons & exotics Hadron 2011, June 17

Diquarks and antiquarks in exotics: a ménage à trois and a ménage à quatre

- a menage a trois is very different from an ordinary family...
- similarly, exotic hadrons with *both* q-q and q-qbar pairs have important color-space correlations that are completely absent in ordinary mesons and baryons.
- when both present, need to keep in mind that q-qbar interaction is much stronger than q-q interaction

# →color structures that are totally different from those in normal hadrons

 $\rightarrow$ unusual experimental properties of

(Q Q qbar qbar) and (Q Qbar q qbar) tetraquarks until 5/2011:

leading tetraquark candidate: X(3872) Seen in  $B \rightarrow K \pi^+ \pi^- J/\psi(1S)$ With very high stats by Belle, BaBar and CDF M[X(3872)] = M(D) + M(D\*) = 1865 + 2007 to within 1 MeV!

 $\rightarrow$ b-quark analogue(s)?

TH: for sufficiently heavy Q-s, tetraquarks might be below two meson threshold:(b qbar bbar q) below B Bbar(b qbar cbar q) below B Dbar

crucial difference vs. ordinary mesons:  $(Qq)(\bar{Q}\bar{q})$  can form a  $\bar{6}6$  color configuration which has much stronger binding than  $\bar{3}3$ 

some of these states have exotic electric charge, e.g.  $bd\bar{c}\bar{u} \rightarrow J/\psi\pi^{-}\pi^{-}$ 

their decays have striking experimental signatures: monoenergetic photons and/or pions, e.g.  $bq\bar{c}\bar{q}$  with I=0 above  $B_c\pi$  threshold can decay into  $B_c\pi$  via isospin violation,

or electromagnetically into  $B_c \gamma$ 

#### both very narrow!

# Unique signal for bbq and bbq double bottom baryons and bb tetratqaurks

- $b \rightarrow c \overline{c} s \rightarrow J/\psi s$ 
  - so  $bbq \rightarrow J/\psi J/\psi (ssq) \rightarrow J/\psi J/\psi \Xi$ similarly  $b\overline{b}q\overline{q} \rightarrow J/\psi J/\psi (s\overline{sqq}) \rightarrow J/\psi J/\psi K K$ and  $bb\overline{q}\overline{q}$

With all final state hadrons coming from the same vertex

#### Unique signature but v. low rate. Challenge & opportunity for LHCb !

M. Karliner, heavy baryons & exotics

2008: Belle reported anomalously large BR (2 orders of mag.)  $\Upsilon(5S) \rightarrow \Upsilon(1S) \pi^+ \pi^ \Upsilon(5S) \rightarrow \Upsilon(2S) \pi^+ \pi^-$ 

**0802.0649 [hep-ph], Lipkin & M.K.:** Enhancement due to mediation by  $\overline{b}bud$  tetraquark T\_bb:

B B\*-bar  $\approx$  (b-bar b u dbar)

$$\Upsilon(mS) \to T^{\pm}_{\overline{b}b} \pi^{\mp} \to \Upsilon(nS) \pi^{+} \pi^{-}$$

#### Possibility of Exotic States in the Upsilon system

Marek Karliner<sup>a</sup>\* and Harry J. Lipkin<sup>a,b†</sup>

#### Abstract

Recent data from Belle show unusually large partial widths  $\Upsilon(5S) \rightarrow \Upsilon(1S) \pi^+\pi^-$  and  $\Upsilon(5S) \rightarrow \Upsilon(2S) \pi^+\pi^-$ . The Z(4430) narrow resonance also reported by Belle in  $\psi'\pi^+$  spectrum has the properties expected of a  $\bar{c}cu\bar{d}$ charged isovector tetraquark  $T^{\pm}_{\bar{c}c}$ . The analogous state  $T^{\pm}_{\bar{b}b}$  in the bottom sector might mediate anomalously large cascade decays in the Upsilon system,  $\Upsilon(mS) \rightarrow T^{\pm}_{\bar{b}b}\pi^{\mp} \rightarrow \Upsilon(nS) \pi^+\pi^-$ , with a tetraquark-pion intermediate state. We suggest looking for the  $\bar{b}bu\bar{d}$  tetraquark in these decays as peaks in the invariant mass of  $\Upsilon(1S)\pi$  or  $\Upsilon(2S)\pi$  systems. The  $\bar{b}bu\bar{s}$  tetraquark can appear in the observed decays  $\Upsilon(5S) \rightarrow \Upsilon(1S) K^+K^-$  as a peak in the invariant mass of  $\Upsilon(1S)K$  system. We review the model showing that these tetraquarks are below the two heavy meson threshold, but respectively above the  $\Upsilon \pi\pi$  and  $\Upsilon K\bar{K}$  thresholds.

#### Observation of two charged bottomonium-like resonances

The Belle Collaboration

(Dated: May 24, 2011)

#### Abstract

We report the observation of two narrow structures at  $10610 \text{ MeV}/c^2$  and  $10650 \text{ MeV}/c^2$  in the  $\pi^{\pm} \Upsilon(nS)$  (n = 1, 2, 3) and  $\pi^{\pm} h_b(mP)$  (m = 1, 2) mass spectra that are produced in association with a single charged pion in  $\Upsilon(5S)$  decays. The measured masses and widths of the two structures averaged over the five final states are  $M_1 = 10608.4 \pm 2.0 \text{ MeV}/c^2$ ,  $\Gamma_1 = 15.6 \pm 2.5 \text{ MeV}$  and  $M_2 = 10653.2 \pm 1.5 \text{ MeV}/c^2$ ,  $\Gamma_2 = 14.4 \pm 3.2 \text{ MeV}$ . Analysis favors quantum numbers of  $I^G(J^P)=1^+(1^+)$  for both states. The results are obtained with a  $121.4 \text{ fb}^{-1}$  data sample collected with the Belle detector near the  $\Upsilon(5S)$  resonance at the KEKB asymmetric-energy  $e^+e^-$  collider.





Comparison of  $Z_b(10610)$  and  $Z_b(10650)$  parameters obtained from different decay channels. The vertical dotted lines indicate  $B^*\overline{B}$  and  $B^*\overline{B}^*$  thresholds.

$$J^P = 1^+$$
 for both  $Z_b(10610)$  and  $Z_b(10650)$ 

M. Karliner, heavy baryons & exotics

Alternative (complementary ?) desc. as "molecule"

Tornqvist, Z. Phys. C61,525 (1993):

Heavy-light Qq mesons have I=1/2

- $\rightarrow$  they couple to pions
- → deuteron-like meson-meson bound states, "deusons" via pion exchange:

 $D\bar{D}^*$  (I=0) at threshold  $\leftarrow \rightarrow$  X(3872) ! S-wave  $\rightarrow J^P = 1^+$ 

I=1 attraction x3 weaker than I=0  $\rightarrow$  no I=1

What about B B-bar\* analogue ?...

B B\* vs D D\*:

- -- same attractive potential
- -- much heavier, so smaller kinetic energy
- $\rightarrow$  expect  $B\bar{B}^*$  and  $B^*\bar{B}^*$  I=1 states near threshold
- $\rightarrow$  Z<sub>b</sub>(10610) and Z<sub>b</sub>(10650) seen by Belle !!!

```
I=0 binding much stronger

\rightarrowI=0 states expected 20-30 MeV below threshold
```

```
EXP signature:

Z_b(I=0) \rightarrow Y(ns) \pi_+ \pi_-

Z_b(I=0) \rightarrow B B-bar \gamma via EM B^* \rightarrow B \gamma, E(\gamma)=46 MeV
```

#### $\rightarrow$ LHCb!

 $\Sigma_{h}^{+}\Sigma_{h}^{-}$  dibaryon ?

 $\Sigma_{b}$  heavier, with I=1  $\rightarrow$  stronger binding via  $\pi$ 

 $\rightarrow$  deuteron-like J=1, I=0 bound state: "beautron"

exp. signature:

 $(\Sigma_{b} \Sigma_{b}) \rightarrow \Lambda_{b} \Lambda_{b} \pi \pi$   $\Gamma(\Sigma_{b}) = 4.3+-3 \text{ MeV}, \Gamma(\Sigma_{b}) = 9.2+-3 \text{ MeV}$  +so might be visible

## should be seen in lattice QCD

## Summary

• consitituent quark model with color HF interaction

→  $\Sigma_b$ ,  $\Xi_b$ ,  $\Omega_b$  masses predicted to  $\leq$  3MeV

- challenge for theory: derivation from QCD
- prediction:  $\mu_{\Lambda_c} = 0.43 \text{ n.m.}$   $\mu_{\Lambda_b} = -0.067 \text{ n.m.}$
- QQqq tetraquarks: new color structures, unique exp. signatures
- prediction for  $\Upsilon(nS) \pi^+$  peaks  $\rightarrow$  just seen by Belle
- → new I=0 exotic states below threshold: BB\*, B\*B\*, Σ\_b Σ\_b,...

# Backup slides

M. Karliner, heavy baryons & exotics



# constituent quark mass differences

 example I: quark mass differences from baryon mass differences:

$$M_{\Lambda_{c}} - M_{\Lambda} =$$

$$= \left(m_{u} + m_{d} + m_{c} + V^{HF}_{ud} + V^{HF}_{uc} + V^{HF}_{dc}\right) -$$

$$- \left(m_{u} + m_{d} + m_{s} + V^{HF}_{ud} + V^{HF}_{us} + V^{HF}_{ds}\right) =$$

$$= m_{c} - m_{s} = 0$$

| $\rightarrow$ challenge to npQCD                                            |
|-----------------------------------------------------------------------------|
| on <i>who your neighbors are"</i>                                           |
| "how much you weigh depends                                                 |
| but depends on the spectator quark                                          |
| $\langle m_i - m_j \rangle_{dBar} \approx \langle m_i - m_j \rangle_{dMes}$ |
| in mesons and baryons                                                       |
| masses is <u>the same</u> in                                                |
| difference of effective quark                                               |

MK & Lipkin, hep-ph/0307243

M. Karliner, heavy baryons & exotics

|                               |             |             |                 |                 |                 |                 | 1                |                  |
|-------------------------------|-------------|-------------|-----------------|-----------------|-----------------|-----------------|------------------|------------------|
| observable                    | baryons     |             | mesons          |                 |                 |                 |                  |                  |
|                               |             |             | J =             | = 1             | J :             | = 0             | $\Delta m_{Bar}$ | $\Delta m_{Mes}$ |
|                               | $B_i$       | $B_j$       | $\mathcal{V}_i$ | $\mathcal{V}_j$ | $\mathcal{P}_i$ | $\mathcal{P}_j$ | MeV              | MeV              |
|                               | oud         | and         | ٥Ā              | иđ              | ٥đ              | иđ              | 177              | 170              |
| $\langle m_s - m_u \rangle_d$ | Λ           | N           | $K^*$           | au              | K               | $\pi$           | 177              | 179              |
|                               | 11          | ŢŃ          | <u></u>         | $\rho$          | <u></u>         | ~               |                  |                  |
| $\langle m_s - m_u \rangle_c$ |             |             | $c\bar{s}$      | cu              | $c\bar{s}$      | cu              |                  | 103              |
|                               |             |             | $D_s^*$         | $D_s^*$         | $D_s$           | $D_s$           |                  |                  |
| $\langle m_s - m_u \rangle_b$ |             |             | $b\overline{s}$ | $b\bar{u}$      | $b\overline{s}$ | $b\bar{u}$      |                  | 91               |
| , 5 2,0                       |             |             | $B_s^*$         | $B_s^*$         | $B_s$           | $B_s$           | 1                |                  |
|                               |             | 7           | 7               | 7               | 7               | 7               |                  |                  |
| $\langle m_c - m_u \rangle_d$ | cua         | uua         | ca<br>D#        | ua              | ca              | ua              | 1346             | 1360             |
|                               | $\Lambda_c$ | N           | $D^*$           | ρ               | D               | $\pi$           |                  |                  |
| $\langle m_c - m_u \rangle_c$ |             |             | $c\overline{c}$ | $u\overline{c}$ | $c\overline{c}$ | $u\overline{c}$ |                  | 1095             |
| ,, _                          |             |             | $\psi$          | $D^*$           | $\eta_c$        | D               |                  |                  |
|                               | d           |             | ā               | J               | αĪ              | - J             |                  |                  |
| $\langle m_c - m_s \rangle_d$ | cua         | sua         | ca              | sa<br>14        | ca              | sa              | 1169             | 1180             |
|                               | $\Lambda_c$ | Λ           | $D^*$           | $K^{*}$         | D               | K               |                  |                  |
| $\langle m_c - m_s \rangle_c$ |             |             | $c\overline{c}$ | $s\overline{c}$ | $c\overline{c}$ | $s\overline{c}$ |                  | 991              |
|                               |             |             | $\psi$          | $D_s^*$         | $\eta_c$        | $D_s$           |                  |                  |
| (                             | bud         | and         | $b\overline{d}$ | иđ              | $b\bar{d}$      | шĀ              | 4005             | 4700             |
| $\langle m_b - m_u \rangle_d$ | Δ.          | M           | $P^*$           | aa              | P               | π               | 4685             | 4700             |
|                               | $m_b$       | ĨŇ          | $\overline{D}$  | $\rho$          | D               | 74              |                  |                  |
| $\langle m_b - m_u \rangle_s$ |             |             | $b\bar{s}$      | $u\bar{s}$      | $b\bar{s}$      | $u\bar{s}$      |                  | 4613             |
|                               |             |             | $B_s^*$         | $K^*$           | $B_s$           | K               |                  |                  |
|                               | bud         | sud         | $b\bar{d}$      | $s\bar{d}$      | $b\bar{d}$      | $s\bar{d}$      | 4509             | 4591             |
| $\langle m_b - m_s \rangle_d$ | Δ.          | Λ           | $R^*$           | $K^*$           | B               | K               | 4508             | 4521             |
|                               | 110         | 11          |                 | 11              | D               |                 |                  |                  |
| $\langle m_b - m_c \rangle_d$ | bud         | sud         | $b\bar{d}$      | $c\bar{d}$      | $b\bar{d}$      | $c\bar{d}$      | 3339             | 3341             |
| ,                             | $\Lambda_b$ | $\Lambda_c$ | $B^*$           | $D^*$           | B               | D               |                  |                  |
| $\langle m_1 - m \rangle$     |             |             | $b\overline{s}$ | $c\overline{s}$ | $b\overline{s}$ | $c\overline{s}$ |                  | 3328             |
| \//00 - //0c/s                |             |             | $B^*_{\circ}$   | $D^*_{\circ}$   | $B_s$           | $D_s$           |                  | 0020             |
|                               |             |             | - 8             | - 8             | - 8             | - 8             | 1                |                  |

# Testing confining potentials through meson/baryon HF splitting ratio

B. Keren-Zur, hep-ph/0703011 & Ann. Phys

• from constituent quarks model can derive:

$$\frac{M_{K^*} - M_{K}}{M_{\Sigma^*} - M_{\Sigma}} = \frac{4}{3} \frac{\left\langle \psi \left| \delta(\vec{r}_u - \vec{r}_{\bar{s}}) \right| \psi \right\rangle_{meson}}{\left\langle \psi \left| \delta(\vec{r}_u - \vec{r}_{\bar{s}}) \right| \psi \right\rangle_{baryon}}$$

- depends only on the confinement potential and quark mass ratio
- can be used to test different confinement potentials

Testing confining potentials through meson/baryon HF splitting ratio

• 3 measurements (Q = s,c,b)

• 5 potentials:

- Harmonic oscillator
- Coulomb interaction
- Linear potential
- Linear + Coulomb
- Logarithmic

## Hyperfine splitting ratio from potential models vs experiment



M. Karliner, heavy baryons & exotics

## Effective meson-baryon supersymmetry

- meson: Q qbar baryon: Q qq
- in both cases: valence quark coupled to light quark "brown muck" color antitriplet, either a light antiquark (S=1/2) or a light diquark (S=0,S=1)



- Effective supersymmetry:  $T_{LS}^{S} | \mathcal{M}(\bar{q}Q_i) \rangle \equiv | \mathcal{B}([qq]_{S}Q_i) \rangle$
- m(B) m(M) independent of quark flavor (u,s,c,b) !

• need to first cancel the HF interaction contribution to meson masses:

$$\tilde{M}(V_i) \equiv \frac{3M_{\mathcal{V}_i} + M_{\mathcal{P}_i}}{4}$$

• for spin-zero diquarks:

$$\begin{array}{rcl} M(N) - \tilde{M}(\rho) &=& M(\Lambda) - \tilde{M}(K^*) \\ 323 \ \mathrm{MeV} &\approx& 321 \ \mathrm{MeV} \end{array} \approx & 312 \ \mathrm{MeV} \end{array} \approx & 310 \ \mathrm{MeV} \end{array}$$

 for spin-one diquarks need to also cancel HF contribution to baryon masses:

$$\tilde{M}(\Sigma_i) \equiv \frac{2M_{\Sigma_i^*} + M_{\Sigma_i}}{3}; \qquad \tilde{M}(\Delta) \equiv \frac{2M_{\Delta} + M_N}{3}$$

M. Karliner, heavy baryons & exotics

# **Observation of New Heavy Baryon** $\Sigma_{b}$ **and** $\Sigma_{b}^{*}$

This web page summarizes the results of the search for new heavy baryons  $\Sigma_b$  and  $\Sigma_b^*$ based upon 1fb<sup>-1</sup> of data. The results have been approved as of September 21, 2006. The ratio of likelihoods of the null-hypothesis (no  $\Sigma_b^{(*)\pm}$  signal) and the hypothesis of four  $\Sigma_b^{(*)\pm}$  states is 2.6 x 10<sup>-19</sup>. Using the fully reconstructed decay mode

$$\Sigma_{b}^{(*)\pm} \rightarrow \Lambda_{b}^{0}\pi^{\pm}; \quad \Lambda_{b}^{0} \rightarrow \Lambda_{c}^{+}\pi^{-}; \quad \Lambda_{c}^{+} \rightarrow pK^{-}\pi^{+}$$

we measure:

• 
$$m(\Sigma_{b}^{+}) = 5808_{-2.3}^{+2.0} (stat.) \pm 1.7 (syst.) MeV/c^{2}$$
  
•  $m(\Sigma_{b}^{-}) = 5816_{-1.0}^{+1.0} (stat.) \pm 1.7 (syst.) MeV/c^{2}$   
•  $m(\Sigma_{b}^{*+}) = 5829_{-1.8}^{+1.6} (stat.) \pm 1.7 (syst.) MeV/c^{2}$   
•  $m(\Sigma_{b}^{*-}) = 5837_{-1.9}^{+2.1} (stat.) \pm 1.7 (syst.) MeV/c^{2}$ 

M. Karliner, heavy baryons &



M. Karliner, heavy baryons & exotics

## Summary of $\Xi_{\rm b}$ mass predictions

| $m_b - m_c =$    | $\Lambda_b - \Lambda_c$ | $\Sigma_b - \Sigma_c$ | $B_s - D_s$   |
|------------------|-------------------------|-----------------------|---------------|
|                  | Eq. (6)                 | Eq. (7)               | eq. (8)       |
| No HF correction | $5803\pm2$              | $5800\pm2$            | $5794\pm2$    |
| Linear           | $5801 \pm 11$           | $5798 \pm 11$         | $5792 \pm 11$ |
| Coulomb          | $5778\pm2$              | $5776\pm2$            | $5770\pm2$    |
| Cornell          | $5799 \pm 7$            | $5796\pm7$            | $5790\pm7$    |