Bottomonium first results from LHC experiments

Nuno Leonardo
(Purdue University)
for the LHC Collaborations

Hadron2011
Munich, June 15, 2011
introduction
• LHC
• motivations

di-lepton signals
• $\mu\mu, ee$ spectra
• detector resolution

pp @ 7TeV
• data-driven efficiency
• cross section
• prospects

PbPb @ 2.76 TeV
• R_{AA}, cross section
• γ' suppression
LHC luminosity

pp@\(7\) TeV

2011 (2010)
ATLAS, CMS: \(L \sim 1k\) (40) pb\(^{-1}\)
LHCb: \(L \sim 300\) (40) pb\(^{-1}\)
ALICE: \(L \sim 2\) (<1) pb\(^{-1}\)

L\(_{pp}\) \(\approx 10^{30} - 10^{33}\) cm\(^{-2}\) s\(^{-1}\)

pp@\(2.76\) TeV

ATLAS, CMS: \(L \sim 241\) nb\(^{-1}\)
LHCb: \(L \sim 67\) pb\(^{-1}\)
ALICE: \(L < 1\) pb\(^{-1}\)

PbPb@\(2.76\) TeV

ALICE, ATLAS, CMS: \(L \sim 9\) \(\mu\)b\(^{-1}\)
LHCb: n/a

L\(_{PbPb}\) \(\approx 10^{25} - 10^{27}\) cm\(^{-2}\) s\(^{-1}\)
ALICE, ATLAS, CMS, LHCb
LHC experiments (cont’d)

- all four detectors have the capability to study bottomonia
- complementary phase space and physics coverage
 - e.g. central vs forward rapidities, pp vs heavy-ion environments
- based on different: B field, detector technologies, DAQ capabilities, emphasis on hermeticity or particle ID
then... & now

Fermilab, Summer 1977

CERN, Summer 2010

... a spectroscopists delight!
large set of results

BaBar: $\Upsilon(3S) \to \eta_b(1S) \gamma$

Belle: $\Upsilon(5S) \to \Upsilon(2S) \pi\pi$

(Bottomonium-like exotica: 2 charged states just above open beauty B^*B, B^*B^* thresholds)

CESR- 1980/90s CUSB, CLEO

PEP-II/KEKB-2000s BaBar, Belle

Tevatron-2000s CDF, D0

D0
1.3 fb$^{-1}$

CDF
2.9 fb$^{-1}$

$Z_b \to \Upsilon(nS) \pi^\pm$

$\sigma(e^+e^- \to \eta_b(1S))$
bottomonium spectroscopy

direct production

\[pp \to b\bar{b} + X \]

\[\Upsilon(1S) + X \]

indirect production

contribution from feed down transitions from heavier bottomonia

\[pp \to b\bar{b} + X \]

\[\Upsilon_b \to \Upsilon(1S) + \gamma \]

\[\Upsilon(n'S) \to \Upsilon(1S) + X \]

\[\rightarrow 30-50\% \text{ of full } \Upsilon(1S) \text{ productions} \]

no contribution from long-lived states

\[\Gamma(\Upsilon(nS)) \sim 20-50 \text{ KeV} \]

\[\text{BR}(\Upsilon(1S)\to\mu\mu) = (2.48\pm0.05)\% \]

\[\text{BR}(\Upsilon(2S)\to\mu\mu) = (1.93\pm0.17)\% \]

\[\text{BR}(\Upsilon(3S)\to\mu\mu) = (2.18\pm0.21)\% \]
phenomenology

- heavy quarkonia constitute an ideal laboratory for testing interplay between perturbative and non-perturbative QCD
- bottomonium (and in general, quarkonium) production not satisfactorily understood
 ‣ theoretically and experimentally puzzling
- no theory has simultaneously explained Tevatron measurements of both cross section and polarization
 ‣ non-relativistic QCD (incl. color octet), color singlet model, color evaporation model, etc

(notes: drastic change of CSM predicted polarization from LO to NLO/NNLO*)

(note: NNLO* is not a complete NNLO, possibility of large uncanceled logs)
bottomonía at the LHC?

• phenomenology
 ‣ large b-quark mass \Rightarrow non-relativistic effective approaches better realized
 ‣ no feed-down from long-lived b-hadrons

• unprecedented energy regime
 ‣ extended reach, eg probe $p_T > 20$GeV, best discriminate between models
 ‣ high cross section (and luminosity) \Rightarrow bottomonía produced copiously
 ‣ allow new era of bottomonium precision measurements

• heavy ion
 ‣ 1 month per year dedicated to heavy-ion physics run
 ‣ cross sections ~ 50 times larger, energy density ~ 3 times higher than at RHIC \Rightarrow will allow first significant measurements of the Υ resonance family
 ‣ improve overall understanding of the cold and hot nuclear matter effects
 ‣ LHC calls for precision studies of bottomonía at high temperature
di-lepton signals
LHCb Preliminary

\begin{align*}
\sqrt{s} &= 7 \text{ TeV} \\
\int L &= 32.4 \text{ pb}^{-1} \\
N_\Upsilon &\approx 48k
\end{align*}
$N\Upsilon \approx 23k$
CMS Preliminary, $\sqrt{s} = 7$ TeV

$N_\gamma \approx 138k$ ($|\eta| < 2.4$)

$\sqrt{s} = 7$ TeV, $L_{\text{int}} = 40$ pb$^{-1}$

CMS Preliminary 2010

$\sqrt{s} = 7$ TeV, $L_{\text{int}} = 35$ pb$^{-1}$

CMS Preliminary, $\sqrt{s} = 7$ TeV

$N_{\text{1S}} = 23,390 \pm 194$

$N_{\text{1S}} = 7,298 \pm 133$

$N_{\text{1S}} = 3,999 \pm 113$

$PbPb@2.76\text{TeV}$

$P_{T>4.0}$ GeV/c

$N_{\Upsilon} = 138k$ ($|\eta| < 2.4$)
momentum/mass resolution

$\sigma \sim 94\text{MeV}$

$\sigma \sim 46\text{MeV}$ (up to 110 MeV at higher rapidities)

$\sigma \sim 46\text{MeV}$ (up to 110 MeV at higher rapidities)

$\sigma \sim 94\text{MeV}$

$\sigma \sim 46\text{MeV}$ (up to 110 MeV at higher rapidities)

$\sigma \sim 21\text{MeV}$ (up to 50 MeV at higher rapidities)

$\sigma \sim 13\text{ MeV}$

LHCb

LHCb

LHCb

CMS

CMS
prior expectations (before LHC startup)

ALICE simulation

CMS simulation

ATLAS simulation

LHCb simulation

\[\sigma = 54 \text{ MeV}/c^2 \]

Resolution ~ 37 MeV
PP @ 7TeV

- LHCb-CONF-2011-016, 32pb⁻¹
- CMS-BPH-10-003 (arXiv:1012.5545,PRD), 3pb⁻¹

▶ see also talks by B.Akgun and G.Sabatino on Tuesday parallel session Quarkonia/3
Cross-section ingredients

\[\frac{d^2\sigma}{dp_Tdy} \cdot B(Y(nS) \rightarrow \mu^+\mu^-) = \frac{N_{Y(nS)}^{fit}(A_\epsilon)}{\mathcal{L} \cdot \Delta p_T \cdot \Delta y} \]

Acceptance

CMS

LHCb

Efficiency

CMS

LHCb

Signal yields

Polarization:
$\Upsilon(nS)$ differential cross sections

LHCb

$\sigma(pp \rightarrow \Upsilon(1S) X; 0 < p_T < 15 \text{ GeV/c}, 2 < y < 4.5) = 108.3 \pm 0.7^{+30.9}_{-25.8} \text{ nb}$

CMS (unpolarized case)

$\langle |y| < 2 \rangle$

$\sigma(pp \rightarrow \Upsilon(1S) X) \cdot B(\Upsilon(1S) \rightarrow \mu^+ \mu^-) = 7.37 \pm 0.13 \text{ (stat.)}^{+0.61}_{-0.42} \text{ (syst.)} \pm 0.81 \text{ (lumi.)} \text{ nb}$

$\sigma(pp \rightarrow \Upsilon(2S) X) \cdot B(\Upsilon(2S) \rightarrow \mu^+ \mu^-) = 1.90 \pm 0.09 \text{ (stat.)}^{+0.20}_{-0.14} \text{ (syst.)} \pm 0.24 \text{ (lumi.)} \text{ nb}$

$\sigma(pp \rightarrow \Upsilon(3S) X) \cdot B(\Upsilon(3S) \rightarrow \mu^+ \mu^-) = 1.02 \pm 0.07 \text{ (stat.)}^{+0.11}_{-0.08} \text{ (syst.)} \pm 0.11 \text{ (lumi.)} \text{ nb}$

$\Upsilon(2S)/\Upsilon(1S): 0.26 \pm 0.02 \pm 0.04$

$\Upsilon(3S)/\Upsilon(1S): 0.14 \pm 0.01 \pm 0.02$
comparison: theory

P. Artoisenet et al., PRL101, 152001, 2008

N. Leonardo HADRON’2011 bottomonia@LHC, 20
Comparison: Experiment

- CMS 3.1 pb⁻¹
- LHCb 32.4 pb⁻¹

BR(Ψ(1S) → μ⁺μ⁻)

\[\frac{dN}{d\phi_{T}} \propto \left[1 + \frac{\phi_{T}}{\langle \phi_{T} \rangle} \right]^n \]

\(\sqrt{s} = 7 \text{ TeV} \)

Γ(1S)

- **LHC**

LHC vs. Tevatron

- CMS, |y| < 2, \(\sqrt{s} = 7 \text{ TeV} \)
- DØ, |y| < 1.8, \(\sqrt{s} = 1.96 \text{ TeV} \)
- CDF, |y| < 0.4, \(\sqrt{s} = 1.8 \text{ TeV} \)

Γ(2S)

- CMS, |y| < 2, \(\sqrt{s} = 7 \text{ TeV} \)
- CDF, |y| < 0.4, \(\sqrt{s} = 1.8 \text{ TeV} \)

Γ(3S)

- CMS, |y| < 2, \(\sqrt{s} = 7 \text{ TeV} \)
- CDF, |y| < 0.4, \(\sqrt{s} = 1.8 \text{ TeV} \)

LHC Preliminary

\(\sqrt{s} = 7 \text{ TeV} \)

LHCb

- Data (p_T < 15 GeV/c)
- CMS 3 pb⁻¹ (p_T < 30 GeV/c)

HADRON'2011
polarization

- detector acceptance sensitive to unknown polarization \(\sigma(\Upsilon) \) variations of about 20%
- measure full angular distribution of leptons
 \[
 \frac{dN}{d\Omega} \propto 1 + \lambda_\theta \cos^2 \theta + \lambda_\phi \sin 2\theta \cos \phi + \lambda_\phi \sin^2 \theta \cos 2\phi
 \]
- in complementary reference frames
- also frame independent
 \[
 \bar{\lambda} = \frac{\lambda_\theta + 3\lambda_\phi}{1 - \lambda_\phi}
 \]
- results binned in \(p_T \) and rapidity
- measurements being currently finalized

Acceptance test \(\bar{\lambda} \)'s
other measurements, prospects

- prompt bottomonium reconstruction includes feeddown from higher states
 - eg 40-50% of \(\Upsilon(1S) \) production from decays of excited 2S,2P,3S states [CDF, PRL84 (2000) 2094]
 - desirable to separate direct production
 - eg reconstruct \(\chi_b \rightarrow \Upsilon \gamma \) decays
 - (plots show examples already achieved for charmonia)
- search for exotica, bottomonia-like states?
-⇒ more data required
PbPb @ 2.76 TeV

- CMS-PAS-HIN-10-006

aka. Upsilon suppression.
bottomonia as QGP probe

- at high temperatures, strongly interacting matter becomes a plasma of quarks and gluons
- suppression of quarkonia is a classical prediction of QGP signature
 ‣ color screening of the binding potential \[T.Matsui, H.Satz PLB178, 416 (1986) \]
 ‣ suppression pattern indicates the medium temperature (‘QGP thermometer’)
 ‣ role of cold nuclear matter effects also emphasized at SPS and RHIC
- bottomonium measurements at LHC help characterize the dense matter produced in heavy-ion collisions beyond the SPS and RHIC charmonium results
 ‣ the \(\Upsilon \) family of states is an expected powerful probe
 ‣ \(\Upsilon(1S) \) is the most tightly bound state \(\triangleright \) last to melt down
 ‣ provide 3 different states/handles for probing the hot medium
- quantitative bottomonium measurements accessible for first time
 ‣ large production rates \(\triangleright \) sizable datasets
 ‣ exploit excellent mass resolution

- \[\frac{T}{T_C} \]

\[\frac{1}{\langle r \rangle} [\text{fm}^{-1}] \]

<table>
<thead>
<tr>
<th>State</th>
<th>(\Upsilon(1S))</th>
<th>(\chi_b(1P))</th>
<th>(\Upsilon'(2S))</th>
<th>(\chi_b'(2P))</th>
<th>(\Upsilon''(3S))</th>
</tr>
</thead>
<tbody>
<tr>
<td>(m) (GeV/c^2)</td>
<td>9.46</td>
<td>9.99</td>
<td>10.02</td>
<td>10.26</td>
<td>10.36</td>
</tr>
<tr>
<td>(r_0) (fm)</td>
<td>0.28</td>
<td>0.44</td>
<td>0.56</td>
<td>0.68</td>
<td>0.78</td>
</tr>
</tbody>
</table>

Sequential melting

\[T_C \sim 150-170 \text{MeV} \]
PbPb run 2010 @2.76 TeV (7.28 μb^-1)

- same online+offline selection applied to both datasets
- muon selection: quality cuts,
\[p_T > 4 \text{ GeV/c}, \ |\eta| < 2.4 \]

pp run 2011 @2.76 TeV (225 nb^-1)
invariant yields
$\Upsilon(1S)$ invariant yields in PbPb

- **Systematic uncertainties**
 - yield extraction: 8-14%
 - acceptance: 1-5%
 - efficiency: 14%
 - T_{AA}: 4.3-15%
- **Statistical uncertainties**: 5-20%
nuclear modification factor, R_{AA}

$$R_{AA} = \frac{\mathcal{L}_{pp}^{int}}{T_{AA} N_{MB}} \frac{N_{PbPb}^{PpPb}}{N_{pp}^{PpPp}} \frac{\varepsilon_{pp}}{\varepsilon_{PbPb}(cent)}$$

- $N_{PbPb} = 86 \pm 12^{[\text{stat}]} \pm 3^{[\text{syst}]}$
- $N_{pp} = 101 \pm 12^{[\text{stat}]} \pm 3^{[\text{syst}]}$
- $T_{AA} = 5.66 \text{ mb}^{-1}$
- $N_{MB} = 55.7 \text{M MB PbPb collisions}$
- $L_{pp} = 225 \text{ nb}^{-1}$

- $R_{AA}(1S)$ in 20% most central bin
 - $0.60 \pm 0.12^{\text{stat.}} \pm 0.10^{\text{syst.}}$

- 1S yields affected by large feeddown
- suppression might be due to melting of excited states (2S, 2P, 3S)
• 1S inclusive (minimum bias) R_{AA}
 ‣ $0.62 \pm 0.11_{\text{stat.}} \pm 0.10_{\text{syst.}}$

• no clear dependency on rapidity or centrality; high p_T not as suppressed?

• will be answered with more data
 ‣ also separate 2S, 3S measurements
$\Upsilon(2S+3S) \text{ vs } \Upsilon(1S)$

- measure fraction of excited states $\Upsilon(2S+3S)$ relative to $\Upsilon(1S)$
- extracted directly from fit to PbPb and pp data samples

$\frac{\Upsilon(2S+3S)}{\Upsilon(1S)}_{\text{PbPb}} = 0.24^{+0.13}_{-0.12} \pm 0.02$

$\frac{\Upsilon(2S+3S)}{\Upsilon(1S)}_{\text{pp}} = 0.78^{+0.16}_{-0.14} \pm 0.02$
• extract double ratio directly from simultaneous fit to both samples

\[\chi = \frac{\gamma(2S+3S)/\gamma(1S)}{\gamma(2S+3S)/\gamma(1S)} \bigg|_{\text{PbPb}} = 0.31^{+0.19}_{-0.15} \pm 0.03 \]

• advantages of double ratio
 ‣ acceptance, efficiency, luminosity cancel
 ‣ remaining systematics 9% from fit lineshape model
 ‣ measurement is statistics dominated

first observation of suppression of excited Υ states
\(\Upsilon \) suppression: \(p \)-value

- ‘what is probability for a background fluctuation to mimic the observed result?’

 \- generate pseudo-experiments assuming the null hypothesis (ie no suppression)
 \- fit pseudo-data samples with nominal fit
 \- count fraction of occurrences for which ratio (taken as test statistic) is same or lower than observed

- \(p \)-value: 0.9\%, or

- significance 2.4\(\sigma \) (1-sided Gaus. test)

\[\chi = \frac{[Y(2S+3S)/Y(1S)]_{\text{PbPb}}}{[Y(2S+3S)/Y(1S)]_{\text{pp}}} \]

null hypothesis: \(\chi = 1 \) (no suppression)

\(p \)-value < 1\%
Summary

• first measurements of $\Upsilon(nS)$ differential cross sections and ratios at $\sqrt{s}=7\text{TeV}$ have been performed
 ‣ very good agreement between all LHC results, contributing to an improved understanding of quarkonium production
 ‣ polarization studies being finalized, will shed further light on existing puzzles

• bottomonia also studied in PbPb collisions at $\sqrt{s_{NN}}=2.76\text{TeV}$
 ‣ first observation of relative suppression of excited Υ states
 ‣ 40% suppression of $\Upsilon(1S)$ \Rightarrow consistent with melting of excited states only

• pp and PbPb 2011 LHC runs will allow to:
 ‣ probe high p_T spectrum
 ‣ improve precision and significance of the measurements
 ‣ measure further bottomonia/-like states