

Hal Evans Indiana University for the ALICE, ATLAS, CMS, LHCb Collaborations

Hadron2011, 13-17 June, 2011, Munich

Outline

1) Overview of LHC Experiments

- Issues relevant for heavy hadrons

2) Heavy Flavor Production

- Background & Theoretical predictions
- Charm production
- Beauty production

3) Exclusive Final States

- Spectroscopy
- Tool for studying Electro-Weak symmetry breaking

4) Summary of What We've Learned (so far)

- What to look for in the future

~50 Experimental Results from ALICE, ATLAS, CMS, LHCb

What I Won't Cover

Tragically, the organizers ignored my request for more time

– and I only needed 150 extra minutes !

We will have to skip

- nearly interesting experimental details
- many states that have been re-observed at the LHC
- CP-violation and other electro-weak topics
- $\quad B \ \rightarrow \ \mu^+ \ \mu^-$
- top physics (feeble excuse: it doesn't hadronize)

Other LHC Heavy Flavor-related talks at Hadron 2011

- Plenary Sessions
 - > Charmonium (Yuanming Gao) & Bottomonium (Nuno Leonardo)
- Parallel Session talks by
 - > ALICE: K. Schweda, F. Kramer
 - > ATLAS: C. Schiavi
 - > CMS: B. Akgun, B. Paolo, H-C Kaestli, C. Grab, J. Wang
 - > LHCb: R. Cardinale, G. Sabatino, A. Uklega, B. Liu

Hadron2011: 16 June, 2011

Heavy Flavors and LHC Exp's

Heavy Flavor Production/Spectroscopy is not the primary focus of any of the LHC experiments

- ATLAS/CMS direct searches for new physics
- LHCb matter-antimatter asymmetry, EW symmetry breaking
- ALICE strongly interacting matter at extreme energy densities

Nevertheless each has good capabilities to make these types of measurements

- unfortunately, no time to go into details of each experiment
- but will highlight a few of the most important issues

Experimental Issues Illustrated

Production and Acceptance

Data Collected

√s (TeV)

Hal

Detector Acceptances

Triggers used in analyses

Trigger	Exp's	Comments		
min(micro) bias	all	only earliest data		
single muon	all	lowest p_{T} prescaled		
single jet	ATLAS, CMS	lowest \mathbf{p}_{T} prescaled		
di-muon	all	unprescaled (so far)		
displaced Vtx	LHCb	unprescaled		

Hadron2011: 16 June, 2011

Tracking & Hadron ID

Heavy Flavor Production

Situation c. 2000

Beauty Production vs NLO predictions

reasonable agreement in shape, but scale off by factors of 2–3

Charm Production vs NLO Predictions

agreement generally better, but errors quite large

Could this be New Physics ???

Hal Evans

Road to Enlightenment

Experimental Issues: be careful what you report

- cross-sections from reconstructed *b*-hadrons (B⁺ \rightarrow J/ ψ K⁺, ...)
 - > careful treatment of fragmentation, updated $\alpha_s \& PDFs$
- cross-sections from b-tagged jets

Theory Issues: consistent calculations peripheral to NLO

- Large scale dependence: sizable contributions from beyond NLO
 - > low p_T small $x \sim m_b / \sqrt{s}$ effects
 - > high p_T large log(p_T / m_b) (FONLL resummation)
- Consistent (FONLL) treatment of fragmentation functions

State of the Art

Heavy Flavor Production included in MC generators

- PYTHIA, HERWIG: LO with some higher order topologies

- MadGraph/MadEvent: 2 \rightarrow 2,3 Processes
- CASCADE: off-shell LO Matrix Elems w/ high-E factorization
- MC@NLO, POWHEG, FONLL, MCFM: full NLO calculations

Experimental Issues

- Does good data vs NLO agreement extend to new LHC energy regime?
- How well do we understand the details of higher order topologies?
- Cross-section measurements techniques
 - i) inclusive (b/c-jet, e/μ)
 ii) partially inclusive (μ D⁰ X, J/ψ X,...)

> iii) exclusive (c
$$\rightarrow$$
 D(*), B⁺ \rightarrow J/ ψ K⁺,...)

📕 Hal Evans

Hadron2011: 16 June, 2011

Exclusive c: LHCb

pp \rightarrow D X using micro bias trigger (1.81 nb⁻¹ – May, 2010)

- *b*-component extract using fit to D-meson impact parameter distrib.

Exclusive c: ATLAS

pp \rightarrow D X using minimum bias trigger (1.1 nb⁻¹ – Mar-Jul, 2010)

– contains both *b,c* components (nb: $\sigma_{cc} \sim 20 \sigma_{bb}$)

	$\sigma^{\it vis}[\mu \it b]~(\it p_{ au}\!>\!{ m 3.5~GeV},~ \eta \!<\!{ m 2.1})$	POWHEG-PYTHIA	
$oldsymbol{D}^{*\pm}$	285 \pm 16 (stat) $^{+32}_{-27}$ (syst) \pm 31 (lum) \pm 4 (br)	153 $^{+169}_{-80}(\text{scale})$ $^{+13}_{-15}(m_Q)$ $^{+24}_{-21}(\text{PDF})$ $^{+20}_{-16}(\text{hadr})$	
$oldsymbol{D}^{\pm}$	238 \pm 13 (stat) $^{+35}_{-23}$ (syst) \pm 26 (lum) \pm 10 (br)	132 $^{+137}_{-65}$ (scale) $^{+11}_{-10}$ (<i>m</i> _Q) $^{+20}_{-18}$ (PDF) $^{+21}_{-11}$ (hadr)	
$m{D}_{s}^{\pm}$	168 \pm 34 (stat) $^{+27}_{-25}$ (syst) \pm 18 (lum) \pm 10 (br)	59 $^{+57}_{-28}(\text{scale})$ $^{+4}_{-6}(m_Q)$ $^{+9}_{-8}(\text{PDF})$ $^{+7}_{-8}(\text{hadr})$	

data already systematics limited

Exclusive c: ALICE

pp → D X at \sqrt{s} = 7 TeV: 1.6 nb⁻¹ (20% of 2010 data)

GM-VFNS: Kniehl et al.

also pp \rightarrow D X at \sqrt{s} = 2.76 TeV: 1.1 nb⁻¹

- 3 days of data!

- y acceptance is p_{T} dependent
 - $(\Delta y \sim 1.0 1.6)$
- results scaled to $\Delta y = 0.5$
- results in good agreement with NLO predictions

Charm Summary

Differential cross-sections within exp acceptances

- generally reasonable agreement: data vs NLO – but large uncertainties

Extrapolate individual measurements to full phase space

- theory extrapolation error (ATLAS, ALICE) dominates all others

Inclusive HF to Electrons

ALICE: 2.6 nb⁻¹

- $\sqrt{s} = 7 \text{ TeV pp} \rightarrow eX; |y| < 0.8$
- "photonic decays" subtr.
 - > using meas π^0 cross-section

ATLAS: 1.3(1.4) pb⁻¹ e X (& μ X)

- single $e(\mu)$ trig's; $|\eta| < 2.0$
- W/Z/y^{*} subtr. using PYTHIA

> norm to NNLO at high mass

al good agreement between HF \rightarrow e(μ) data and FONLL prediction in low p_T region 17

Hal

Inclusive HF to Muons

Inclusive b: p_T^{rel} Method

Inclusive b: Vertex Method

ATLAS: 3.0 pb⁻¹

- Min Bias trigger lowest p_{T} bin
- Level-1 jet triggers higher p_{T} bins

CMS: 60 nb⁻¹

- Min Bias trigger lowest p_{T} bin
- Level-1 jet triggers higher $\boldsymbol{p}_{_{T}}$ bins

Inclusive b b: Vertex Method

Partially Inclusive: $b \rightarrow \mu D^0 X$

$pp \ \rightarrow \ \mu D^0(K^-\pi^+) \ X \ (2.9, \ 12.2 \ nb^{-1})$

Fits to D⁰ impact param

Partially Inclusive: $b \rightarrow J/\psi X$

Exclusive Measurements

b b Angular Correlations

Fragmentation Functions

Single and Di-Muon Triggers: 32.5 pb⁻¹

Hadron2011: 16 June, 2011

Exclusive Decays

All Heavy Flavor Hadrons produced copiously at the LHC

- ALICE, ATLAS, CMS: (re)observed all or most of the low-lying states
- but exclusive reconstruction is an area where LHCb takes the lead

Spectroscopy, etc

- access to new final states (several firsts already)
- comparison to predictions for masses, BRs, etc

Ingredients for EW studies

- CP violation from a variety of $B_{u,d,s}$ decay channels

- $B_s \rightarrow J/\psi f_0(980)$ similar to $B_s \rightarrow J/\psi \Phi$
 - but consists of a single CP-odd eigenstate
 - angular analysis not needed to extract CPV ($-2\beta_{c}$) phase
- LHCb analysis: $J/\psi(\mu^+\mu^-) f_0(\pi^+\pi^-)$
 - dimuon trigger: 33 pb⁻¹

1400

st

 $c J/\psi$

 ϕ or f_0

 $B_s^0 \left\{ \overline{b} - \right\}$

events with $| M(J/\psi \pi \pi) - M(B_) | < 30 \text{ MeV}$

1200

LHCb

35 - √s = 7 TeV Data

Toward y: $X_h \rightarrow X_c \ 3\pi^{\pm}, B_s \rightarrow D^0 \ K^{*0}$

y Measurements to date rely primarily on: $B^- \to D^{(*)} \; K^{(*)-}$

many other modes show good potential, e.g.

 $\boldsymbol{B}_{d}^{0} \rightarrow \boldsymbol{D}^{0} \boldsymbol{K}^{*0}, \ \boldsymbol{B}^{-} \rightarrow \boldsymbol{D}^{0} \boldsymbol{K}^{-} \pi^{+} \pi^{-}, \ \boldsymbol{\overline{B}}^{0} \rightarrow \boldsymbol{D}^{+} \pi^{-} \pi + \pi^{-}, \ \boldsymbol{B}_{s}^{0} \rightarrow \boldsymbol{D}_{s}^{+} \boldsymbol{K}^{-} \pi + \pi^{-}$

First step: measure similar/background modes (~36 pb⁻¹)

− normalize to higher-stats modes: $B \rightarrow D^0 \rho$, $X_b \rightarrow X_c \pi^-$

B_s **Properties: B**_s $\rightarrow \mu$ **D**_{s2}^{*} **X**, K^{*0} K^{*0}

Heavy Flavor Production: data vs predictions

charm	good agreement with NLO (but large uncertainties)
(semi) inclusive b	good agreement with NLO, PYTHIA predicts shape well
forward <i>b</i> -prod	good agreement with NLO
exclusive b	data between NLO & PYTHIA (but w/in uncertainties)
b angular correlations	NLO underestimates / MadGraph overest. gluon splitting

- substantial uncertainties on predictions: scale variations
- measurements now largely systematics limited
- new strategies needed for further studies of H.F. production at the LHC
 - > increased luminosity taking away inclusive, low $p_{_T}$ triggers $_{\rightarrow}$ focus on exclusive states (e.g. CMS $\Lambda_{_b} \rightarrow J/\psi ~\Lambda)$

Exclusive Final States & Spectroscopy

- starting to make an impact here (LHCb has several "firsts")
 - > LHCb results will accelerate in the future

LHCD Other exp's limited by lack of triggers sensitive to hadronic decays

> dimuon triggers will be the workhorses

LHCh

But If this were Easy....

It wouldn't be Fun !

CN

Backup Slides

Luminosities

http://lpc.web.cern.ch

Hal Evans

Hadron2011: 16 June, 2011

ALICE Detector

ATLAS Detector

Hal Evans

CMS Detector

LHCb Detector

39

New Physics in *b* **Production ???**

Berger, Harris, Kaplan, Sullivan, Tait, Wagner; PRL 86 (2001)

Incl. HF to Leptons: Composition

Hadron2011: 16 June, 2011

Exclusive b Summary

Flavor Fractions: f_s/f_d

2,3,4 Track Secondary Vertex Trigger: 35 pb⁻¹

Boosted Decision Tree decay selection

Mode	$f_s / f_d \pm \text{stat} \pm \text{syst} \pm \text{theor}$	comments
$\boldsymbol{B}_d \ \rightarrow \ \boldsymbol{D}^- \boldsymbol{K}^+$	0.242 ± 0.024 ± 0.018 ± 0.016	theoretically clean
$\boldsymbol{B}_d \ \rightarrow \ \boldsymbol{D}^- \boldsymbol{\pi}^+$	0249 ± 0.013 ± 0.020 ± 0.025	
LHCb ave	$0.245 \pm 0.017 \pm 0.018 \pm 0.018$	LHCB-CONF-2011-013
HFAG ave	0.295 ± 0.047	arXiv:1010.1589

 $BR(B_{d} \rightarrow D^{-}K^{+}) = (2.02 \pm 0.17 \pm 0.12) \cdot 10^{-4} \quad [PDG: (2.0 \pm 0.6) \cdot 10^{-4}]$

Hadron2011: 16 June, 2011

Adjusting D0 $B_s \rightarrow \mu D_{s1} X$

LHCb measurement

 $- BR(B_{s} \rightarrow \mu D_{s1} X) / BR(B_{s} \rightarrow \mu X) = (5.4 \pm 1.2 \pm 0.4) \cdot 10^{-2}$

D0 measurement (as quoted by PDG)

 $- BR(B_{s} \rightarrow \mu D_{s1} X) \cdot BR(D_{s1} \rightarrow D^{*-} K_{s}^{0}) = (2.4 \pm 0.6 \pm 0.3) \cdot 10^{-3}$ $BR(B_s \rightarrow \mu D_{s1} X) / BR(B_s \rightarrow \mu X) = (9.8 \pm 2.5 \pm 1.2) \cdot 10^{-2}$ (adjusted)

(meas)

D0 measurement adjusted using

- $BR(D_{s1} \rightarrow D^*K) = 1$ assumed by LHCb
- $BR(D_{s1} \rightarrow D^{*-}K_{s0}) = 1/4$
- $BR(B_s \rightarrow \mu X)$ = 9.8% as in LHCb calculation

