

Results on charmonium and charmonium-like production from the LHC

Yuanning Gao (Tsinghua University)

On behalf of the ALICE, ATLAS, CMS and LHCb Collaborations

Outline

- LHC and ALICE, ATLAS, CMS, LHCb
- J/ψ productions: single, double & central exclusive
- ψ (2S) production
- $\chi_{c1,2}$ cross-section ratio measurement
- X(3872) production and mass measurement
- Early results on B_c production
- Summary

LHC in 2010-2011

14 June 2011

Detectors

14 June 2011

(Pseudo-)Rapidity coverage

tracking, ECAL, HCAL, counters lumi, muon, hadron PID

$J/\psi,\psi(2S) \rightarrow \mu\mu$

• J/ ψ , ψ (25) $\rightarrow \mu\mu$ plays a central role in all analyses covered in this talk

 All experiments have efficient trigger(s) for the dimuon final state

J/ψ production: Notations

For p+p \to J/ ψ ($\to\mu\mu$) + X, the differential cross-section can be parameterized as

- Polarization parameters depend on $p_{t},\ y,\ and\ frame\ choices$

•

J/ψ production: An introduction

- Long history cross-section/polarization measurements and theoretical calculations, still not so satisfactory. Predictions from NRQCD Color Singlet Mechanism and Color Octet Mechanism:
 - CSM: LO + NLO + part. NNLO CSM + COM: LO + NLO data at the Tevatron
 - CSM alone is not able to predict the polarization (J/ ψ & ψ (2S))

(For a recent review, see J.P.Lansberg's talk at Quarkonium Production: Probing QCD at the LHC, April 18-21 2011, Vienna University of Technology, Vienna, Austria)

14 June 2011

J/ψ production: An introduction

 Polarization results maybe highly depend on rapidity range, frame...

• The detector acceptance is also a function of

J/ψ production : An introduction

· The task is further complicated due to different sources of J/ψ production.

prompt: direct + feed down from χ_c , $\psi(2S)$ non-prompt: from b hadron decays

Separation of feed down component is challenging

~ 30% from χ_c at Tevatron (CDF Collab. PRL 98(2007) 232001)

+ $B \to J/\psi$ + X component could be separated from the prompt component by a quasi-proper time variable

J/ψ production : Strategy

• Ideally a joint fit at each (p_t , y) bin on ($M^{J/\psi}$, t, $\cos\theta$, ϕ) can simultaneously measure

$$\frac{\mathrm{d}^2 \sigma^{\mathrm{prompt}}}{\mathrm{d}p_t \mathrm{d}y} \quad \frac{\mathrm{d}^2 \sigma^{\mathrm{B} \to \mathrm{J}/\psi}}{\mathrm{d}p_t \mathrm{d}y} \quad \lambda_{\theta}(p_t, y) \quad \lambda_{\phi}(p_t, y) \quad \lambda_{\theta\phi}(p_t, y)$$

• High production rate of J/ψ makes it possible, even with 2010 data.

In practice for the first LHC measurements,
and
$$\frac{d^2\sigma}{dp_t dy}$$
;ALICE, arXiv:1105.0380
ATLAS, arXiv:1104.3038
CMS, arXiv:1101.4193
LHCb, arXiv:1011.4193
LHCb, arXiv:1103.0423- separately $\frac{d^2\sigma^{prompt}}{dp_t dy}$ and $\frac{d^2\sigma^{B\rightarrow J/\psi}}{dp_t dy}$;
- unknown polarization taken as systematicsALICE, arXiv:1105.0380
ATLAS, arXiv:1104.3038
CMS, arXiv:11

٠

$J/\psi \rightarrow \mu\mu$ mass distribution

14 June 2011

Y. Gao Hadron2011

Inclusive J/ψ production

ALICE studies:

- $-\sqrt{S} = 2.76, 7 \text{ TeV}$
- $\mu^+\mu^-$ channel at forward region (2.5<y<4)
- also able to reconstruct J/ψ 's in the e⁺e⁻ channel (|y|<0.9)
- acceptance for J/ ψ down to $p_t \rightarrow 0$

 $σ_{J/\psi} (|y|<0.9) = 10.7\pm1.2(\text{stat})\pm1.7(\text{syst})+1.6(λ_{HE}=1)-2.3(λ_{HE}=-1) \ \mu b$ $σ_{J/\psi} (2.5<y<4) = 6.31\pm0.25(\text{stat})\pm0.80(\text{syst})+0.95(λ_{CS}=1)-1.96(λ_{CS}=-1) \ \mu b$ 13

Inclusive J/ψ production

Prompt J/ψ production

J/ψ from b-hadron decays

M. Cacciari, S. Frixione and P. Nason, J. High Energy Phys. 0103 (2001) 006 H. Jung, Comput. Phys. Commun. 143 (2002) 100. H. Jung et al., arXiv:1008.0152

14 June 2011

Remarks on J/ψ production

- The first results shown based on ~ pb^{-1} data.
 - Much larger samples collected in 2010-2011

- Detail studies including polarization measurements are underway.
 - \rightarrow provide more results to test theory
 - \rightarrow reduce systematic uncertainties

٠

٠

LHCb: Double J/ψ production observation

- Ever seen in NA3 (p-platinum) in 1982, first observation at hadron colliders.
- Sensitive on CSM vs. COM

C.F.Qiao et al., J. Phys. G37(2010) 075019 A.V.Berezhnoy et al., arXiv:1101.5881

- Analysis performed in the range 2<y<4.5, p_t<10 GeV/c
- -4 muons from the same vertex
- Fit M(μ⁺μ⁻)₁ in bins of M(μ⁺μ⁻)₂:
 Double Crystal Ball for the signal Exponential for the background.

LHCb-CONF-2011-009 Parallel session talk: G. Sabatino (LHCb) @ Quarkonia

14 June 2011

LHCb: Double J/ψ production observation

14 June 2011

LHCb: Exclusive J/ ψ and ψ (25) production

• Production of 1 J/ ψ and nothing else: possible if one colourless object is exchanged.

LHCb-CONF-2011-022

Parallel session talks: G. Sabatino @ Quarkonia

LHCb: Exclusive J/ψ and ψ (25) production

- Unambiguous evidence of pomeron, search for • odderon.
- **NeV** LHCb Events per 1 Preliminary Selection: • ∖s=7 TeV - No backward tracks (gap of 2 units of rapidity) 100 - Only 2 forward muons. 50 - **p**_T(μμ)<900 MeV/c Events per 20 MeV 20 LHCb ₁₿ĖLHCb - No photons 2.7 2.8 3.1 2.9 3.2 Preliminary Invariant Mass (GeV) ₁₄ √s=7 TeV 12 $\int L dt = \sim 3pb^{-1}$ 0<u>⊢</u> 3.4 3.5 3.6 3.7 3.8 3.9 Invariant Mass (GeV) 14 June 2011 Y. Gao Hadron2011 21

LHCb

LHCb: Exclusive production (several modes)

Experimental Results		Theory Predictions
J/ψ -> μ⁺μ⁻ :	474 +/- 103 pb	292 pb (Starlight) 330 pb (SuperChic) 330 pb (Motyka&Watt) 710 pb (Schafer&Szczurek)
ψ' -> μ⁺μ⁻ :	12.2 +/- 3.2 pb →	6.1 pb (Starlight) 17 pb (Schafer&Szczurek)
X₀ -> μ⁺μ⁻ɣ :	9.3 +/- 4.5 pb →	14 pb (SuperChic)
X₁ -> μ⁺μ⁻ ɣ :	I6.4 +/- 7.1 pb →	10 pb (SuperChic)
X ₂ -> μ+μ-γ:	28 +/- 12.3 pb →	3 pb (SuperChic)
γγ -> μ⁺μ⁻ :	67 +/- 19 pb →	42 pb (LPAIR)

- Large Theoretical uncertainties (Except DiPhoton DiMuon prediction, uncertainty ~ 1%)
- Predictions contain Rescattering Corrections (Extra strong Interaction between protons alters cross-section by ~20%)
- Results are consistent with predictions

14 June 2011

Parallel session talks: G. Sabatino (LHCb) @ Quarkonia B. Liu (LHCb) @ Quarkonia

14 June 2011

$\chi_{\rm c}$ first appearance at LHC

- $R=\sigma(\chi_{c2})/\sigma(\chi_{c1})$ is an important observable for model builders
- $\chi_c \rightarrow J/\psi + \gamma$ challenge to reconstruct low p_t photon
- Good mass resolution to resolve the small mass difference
- Photon reconstructed by
 - CMS: converted e⁺e⁻ pair
 - LHCb: converted e⁺e⁻ pair + EM shower

$\chi_{\rm c}$ first appearance at LHC

$\chi_{\rm c}$ first appearance at LHC

- LHCb able to use converted and unconverted photons to reconstruct $\chi_{c1,2}$

X(3872) at LHC

 X(3872) discovered by Belle in 2003, and confirmed by experiments at e⁺e⁻ and hadron colliders (BaBar, CDF, DO). CMS PAS BPH-10-018 LHCb-CONF-2011-021

Parallel session talks:

J. Wang(CMS) @ Quarkonia

- B. Liu (LHCb) @ Quarkonia
- R. Cardinale @ Heavy Hadrons

14 June 2011

Y. Gao Hadron2011

X(3872) at LHC: production

• Using 40pb⁻¹ data, CMS measured the ratio

$$R = \frac{\sigma \left(X(3872) \to J\psi\pi\pi \right)}{\sigma \left(\psi \left(2S \right) \to J\psi\pi\pi \right)}$$

- Corrections due to kinematical differences of the decay products estimated by MC.
- Remaining sources of systematics:
 - Background parameterization and signal extraction. 5.3%
 - non-prompt fraction of X(3872) 6.0%
 - X(3872) production mechanism 3.5%
 - limited statistics in MC samples 1.8%
 - Uncertainty on the pion tracking efficiency 4.0%

 $R = 0.087 \pm 0.017 (\text{stat}) \pm 0.009 (\text{syst})$

X(3872) at LHC: mass determination

- Using 35pb⁻¹ data, LHCb measured the mass of X(3872)
- Momentum scale calibrated by the 2-body decays

Decay	Measured mass $[MeV/c^2]$	PDG average $[MeV/c^2]$
$\Upsilon(1S) ightarrow \mu^+ \mu^-$	9459.90 ± 0.54	9460.30 ± 0.26
$J/\psi ightarrow \mu^+\mu^-$	3096.97 ± 0.01	3096.916 ± 0.011
$D^0 ightarrow K^- \pi^+$	1864.75 ± 0.07	1864.83 ± 0.14
$K^0_{ m S} ightarrow \pi^+\pi^-$	497.62 ± 0.01	497.61 ± 0.02

and checked by $\psi(2S) \rightarrow J/\psi \pi \pi$: 3686±0.06 (st

3686±0.06 (stat) 3686.9±0.04

Source of uncertainty	Value $[MeV/c^2]$
Mass fitting:	
Natural width	0.02
Background model	0.02
Fit range	0.01
Momentum calibration:	
Average momentum scale	0.05
η dependence of momentum scale	0.03
Detector description:	
Energy loss correction	0.05
Detector alignment:	
Tracking stations (TT information)	0.05
Vertex detector (track slopes)	0.01
Quadratic sum	0.10

3871.96 \pm 0.46 \pm 0.10 MeV/c²

X(3872) at LHC: prospects

Is X(3872) charmomium (η_{c2}(1D)) or charmonium-like(DD*, tetraquark,...)?

- understand the prompt & b \rightarrow X(3872) component
- determination of the quantum numbers from B \rightarrow X(3872)K (\sim 1000 events reconstructed in 2 fb^-1)
- determination of the width (PDG: $\Gamma < 2.3 \text{ MeV/c2}$, CL = 90%)
- study the decay mechanism...

• Observation & Study of other (and more?) X, Y, Z states

Very first result on B_c at LHC

- B_c is a unique meson formed by two different heavy flavor quarks in SM neither charmonium nor charmonium-like!
- Based on 32.5 pb^-1 collected at LHCb, a ~4 σ signal seen
- With almost identical selection on $B \to J/\psi \; \text{K}, \; \text{the ratio}$

$$\mathscr{R}_{c+} = \frac{\sigma(B_c^{\pm}) \times BR(B_c^{\pm} \to J/\psi\pi^{\pm})}{\sigma(B^{\pm}) \times BR(B^{\pm} \to J/\psiK^{\pm})}$$

is measured to be

$$(2.2 \pm 0.8|_{
m stat.} \pm 0.2|_{
m sys.})\%$$

for $p_{
m T}(B) > 4$ GeV/c and $\eta \in (2.5, 4.5)$

LHCb-CONF-2011-017

14 June 2011

Summary & prospects

- J/ψ production has been studied with the first ~pb⁻¹ of data, prompt & from b hadron decays, agrees with theoretical predictions. Polarization measurements are under way.
- Double J/ ψ production, exclusive J/ ψ production, ψ (25) Production, and $\chi_{c1,2}$ production have been studied by LHCb with 2010 data. More results to come...
- X(3872) seen again at LHC ! More results on quantum numbers, production and decay mechanism are foreseen, in addition to the cross-section measurement (CMS) and mass determination (LHCb).
- With the first appearance of B_c, precise measurements on mass/lifetime/cross-section, observations of new decay modes etc...

14 June 2011