Heavy-Flavor Baryons (at the Tevatron)

Candidates per 0.5 MeV/c²

Thomas Kuhr Hadron2011 16.06.2011

 $Mass(\Lambda_c^+ \pi^+ \pi^-)-Mass(\Lambda_c^+)$ [MeV/c²]

Tevatron: $p\overline{p} @ \sqrt{s} = 1.96 \text{ TeV}$

4.

Tevatron Performance

Hadron 2011, 16.06.2011

Heavy Flavor Production at the Tevatron

- → Huge bb cross section
- Production of all heavy hadron species in fragmentation

but

★ inelastic cross section ~10³ times larger than $\sigma(bb)$ → Trigger ✗ Background tracks from fragmentation
 → High combinatorial background

CDF and D0 Detectors

CDF

- Excellent mass resolution
- Displaced track and di-muon triggers

D0

- Large tracking and muon coverage
- Single + di-muon triggers

 $\eta = 0$

Calorimeter

Toroid

Muon Scintillators

Shielding

Muon Chambers

n = 1

η = 3

B Baryon History

- Λ_b observation
 1991, UA1, PLB 273, 540
- Σ_b^(*) observation
 2007, CDF, PRL 99, 202001
- ✓ Ξ_b observation (D0, CDF),
 2007, D0, PRL 99, 052001,
 2007, CDF, PRL 99, 052002

Hadro

Ω_b observation
 2008, D0,
 PRL 101, 232002
 2009, CDF,
 PRD 80, 072003

Current Knowledge

BOTTOM BARYONS (B = -1)

 $\Lambda_b^0 = u d b, \ \Xi_b^0 = u s b, \ \Xi_b^- = d s b, \ \Omega_b^- = s s b$

 $I(J^{P}) = 0(\frac{1}{2}^{+})$

Λ<mark>0</mark>

 $I(J^{P})$ not yet measured; $0(\frac{1}{2}^{+})$ is the quark model prediction. Mass $m = 5620.2 \pm 1.6$ MeV $m_{A_{b}} - m_{B^{0}} = 339.2 \pm 1.4$ MeV Mean life $\tau = (1.391^{+0.038}_{-0.037}) \times 10^{-12}$ s $c\tau = 417 \ \mu m$

The branching fractions B(*b*-baryon $\rightarrow \Lambda \ell^- \overline{\nu}_\ell$ anything) and B($\Lambda_b^0 \rightarrow \Lambda_c^+ \ell^- \overline{\nu}_\ell$ anything) are not pure measurements because the underlying measured products of these with B($b \rightarrow b$ -baryon) were used to determine B($b \rightarrow b$ -baryon), as described in the note "Production and Decay of *b*-Flavored Hadrons."

For inclusive branching fractions, e.g., $\Lambda_b\to \overline{\Lambda}_c$ anything, the values usually are multiplicities, not branching fractions. They can be greater than one.

AB DECAY MODES	Fraction (Γ_i/Γ)	Confidence level	р (MeV/c)
$J/\psi(1S)$ $\Lambda imes$ B $(b o \Lambda^0_b)$	$(4.7\pm2.3)\times10^{-10}$	-5	1741
$\Lambda_c^+ \pi^-$	$(8.8\pm3.2)\times10^{-10}$	-3	2343
$\Lambda_{c}^{+}a_{1}(1260)^{-}$	seen		2153
$\Lambda_c^+ \ell^- \overline{ u}_\ell$ anything	[v] (10.7±3.2) %		-
$\Lambda_c^+ \ell^- \overline{\nu}_\ell$	$(5.0^{+1.9}_{-1.4})\%$		2345
$\Lambda_c^+ \pi^+ \pi^- \ell^- \overline{\nu}_\ell$	(5.6±3.1) %		2335
$\Lambda_c(2595)^+ \ell^- \overline{\nu}_\ell$	$(6.3^{+4.0}_{-3.1}) \times 10^{-3}$	-3	2211
$\Lambda_c(2625)^+ \ell^- \overline{\nu}_\ell$	$(1.1^{+0.6}_{-0.4})\%$		2196
ph ⁻	$[w] < 2.3 \times 10^{-10}$	-5 90%	2730
$p\pi^-$	$(3.8\pm1.3)\times10^{-1}$	-6	2730
pK ⁻	$(6.0\pm1.9)\times10^{-1}$	-6	2709
$\Lambda\gamma$	< 1.3 × 10	-3 90%	2699


```
I(J^P) = 1(\frac{1}{2}^+)
I, J, P need confirmation.
```

Mass $m(\Sigma_b^+) = 5807.8 \pm 2.7$ MeV Mass $m(\Sigma_b^-) = 5815.2 \pm 2.0$ MeV

Σ _b DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)	
$\Lambda_b^0 \pi$	dominant	128	

 Σ_b^*

$$I(J^P) = 1(\frac{3}{2}^+)$$

I, J, P need confirmation.

 $\begin{array}{l} \text{Mass } m({\Sigma}_{b}^{*+}) = 5829.0 \pm 3.4 \; \text{MeV} \\ \text{Mass } m({\Sigma}_{b}^{*-}) = 5836.4 \pm 2.8 \; \text{MeV} \\ m_{{\Sigma}_{b}^{*}} - m_{{\Sigma}_{b}} = 21.2 \pm 2.0 \; \text{MeV} \end{array}$

Σ [*] _b DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)	
$\Lambda_b^0 \pi$	dominant	156	

 Ξ_b^0, Ξ_b^-

 $I(J^P) = \frac{1}{2}(\frac{1}{2}^+)$ I, J, P need confirmation.

p

```
 \begin{array}{l} \text{Mass } m = 5790.5 \pm 2.7 \ \text{MeV} \\ \text{Mean life } \tau_{\varXi_b^-} = (1.56 \pm 0.26) \times 10^{-12} \ \text{s} \\ \text{Mean life } \tau_{\varXi_b} = (1.49^{+0.19}_{-0.18}) \times 10^{-12} \ \text{s} \end{array}
```

Eb DECAY MODES	Fraction (Γ_i/Γ)	Scale factor	(MeV/c)
$ \begin{array}{ccc} \overline{\Xi}_b \to & \overline{\Xi}^- \ell^- \overline{\nu}_\ell X \times B(\overline{b} \to & \overline{\Xi}_b) \\ \overline{\Xi}_b^- \to & J/\psi \overline{\Xi}^- \times & B(b \to & \overline{\Xi}_b^-) \end{array} $	$\begin{array}{c} (3.9\!\pm\!1.2)\times10^{-4} \\ (8\ \pm 4\)\times10^{-6} \end{array}$	1.4	-

Ω_b^-	$I(J^P) = 0(\frac{1}{2}^+)$ I, J, P need confirmation	tion.
Mass $m=$ 6071 \pm Mean life $ au=$ (1.1	(S=6.2) (S=6.2) $(S=6.2)$ (S=0.2) ((S=6.2) (
Ω_b^- DECAY MODES	Fraction (Γ_i/Γ)	<i>p</i> (MeV/ <i>c</i>)
$\frac{1}{J/\psi \Omega^- \times B(b \to \Omega_b)}$	$(2.4\pm1.2) imes 10^{-6}$	1826

$\Sigma_{b}^{(*)}$ States

- Isospin triplets
- Strong decay to $\Lambda_{\rm b}\pi$ via p-wave
- Charged states
 observable via
 decay chain:

•
$$\Sigma_{b}^{(*)+} \rightarrow \Lambda_{b}^{0} \pi^{+}$$

•
$$\Lambda_b^{0} \rightarrow \Lambda_c^{+} \pi^{-}$$

•
$$\Lambda_c^+ \rightarrow p \ K^- \pi^+$$

- First observed by CDF in 2007 with 1.1 fb⁻¹
- Significance of each peak ~ 3σ
- Measurement of masses and hyperfine splitting:

$$m_{\Sigma_b^+} = 5807.8^{+2.0}_{-2.2} \text{ (stat.)} \pm 1.7 \text{ (syst.) } \text{MeV}/c^2$$

$$m_{\Sigma_b^-} = 5815.2 \pm 1.0 \text{ (stat.)} \pm 1.7 \text{ (syst.) } \text{MeV}/c^2$$

$$m(\Sigma_b^*) - m(\Sigma_b) = 21.2^{+2.0}_{-1.9} \text{ (stat.)}^{+0.4}_{-0.3} \text{ (syst.) } \text{MeV}/c^2$$

Motivation for update:

- Confirm observation
- > Improve mass measurements
- Measure widths and isospin splitting

$\Sigma_{\rm b}{}^{(*)}$ Trigger and Selection

- Vertex fit (with mass constraint) for Λ_c , Λ_b , and $\Sigma_b^{(*)}$
- Selection cuts on
 - Decay time, impact parameter, momentum
- → Optimized on S/ $\sqrt{(S+B)}$ of Λ_{b} signal

 $\Sigma_{\rm b}^{(*)}$ Data Sample

 $\Sigma_{b}^{(*)}$ Fit

> Fit of Q = M($\Lambda_{b}\pi$) – M(Λ_{b}) – M(π)

Background:

- Second order polynomial times
- Square root function (for threshold)

Signal:

- Non-relativistic Breit-Wigner
- With variable width $\Gamma = \Gamma_0 (p_{\pi} / p_{\pi,0})^3$ (for p-wave decay)
- Convolved with double-Gaussian resolution function determined from MC

$\Sigma_{b}^{(*)-}$ Mass Spectrum

Significance:

- Comparison of hypotheses for different numbers of peaks via Δlog(L)
- → Two vs. one: 7.5σ
- → One vs. none: 10.0σ
- Two vs. none: 12.3σ

 $\Sigma_{b}^{(*)+}$ Mass Spectrum

Talk by Igor Gorelov, tomorrow in Heavy Hadron session

• Systematics: momentum scale, resolution model, background model, fit bias, external input

$m(\Sigma_b^+) - m(\Sigma_b^-)$ $m(\Sigma_b^{*+}) - m(\Sigma_b^{*-})$	Imp fa	rove	d by ≥2	$-4.2^{+1.}_{-0.}$ -3.0 ± 0.0	1 + 0.07 9 - 0.09 $0.9^{+0.12}_{-0.13}$	m	È First easurem	ents
		Isospi	n Mass	Splitting,	MeV/c^2			
Σ_b^{*-}	75.7 ± 0	$0.6^{+0.08}_{-0.6}$	5835.0 :	$\pm 0.6 \pm 1.8$	6.4^{+2}_{-1}	.2 + 0.7 .8 - 1.1	$522^{+85}_{-76} \pm 29$)
Σ_b^{*+}	72.7 ± 0	$0.7^{+0.12}_{-0.6}$	5832.0 :	$\pm 0.7 \pm 1.8$	10.4^{+}_{-}	2.7 + 0.8 2.2 - 1.2	$782^{+114}_{-103}{}^{+25}_{-27}$	5
Σ_b^-	$56.2^{+0.}_{-0.}$	${}^{6}_{5}{}^{+0.07}_{-0.4}$	5815.5	$^{+0.6}_{-0.5} \pm 1.7$	4.3^{+3}_{-2}	.1 + 1.0 .1 - 1.1	$333^{+93}_{-73} \pm 35$	ŏ
Σ_b^+	$52.0^{+0.}_{-0.}$	$9 + 0.09 \\ 8 - 0.4$	5811.2	$^{+0.9}_{-0.8} \pm 1.7$	9.2^{+3}_{-2}	.8 + 1.0 .9 - 1.1	$468^{+110}_{-95}{}^{+18}_{-15}$	3
State	Q-value, MeV/ c^2		$\frac{\text{Absolute Mass,}}{\text{m, MeV}/c^2}$		Natural Width, Γ , MeV/ c^2		Yield, num. of cand	ls.
	0	1	A 1 1	·) (XX7.1.1	\$7.11	

$$\Lambda_{\rm b} \rightarrow J/\psi \Lambda$$

- Very little known about flavor physics processes in b baryons
 - For example b → s transitions are sensitive to new physics
- $\succ \Lambda_{\rm b} \to J/\psi \Lambda$
- CDF Run I measurement:

 $f(b \rightarrow \Lambda_{b}) BR(\Lambda_{b} \rightarrow J/\psi \Lambda) = (4.7 \pm 2.3 \pm 0.2) \times 10^{-5}$

$\Lambda_{\rm b} \rightarrow J/\psi \Lambda BR$ Measurement

 Trigger on muon pair or single muon J/ψ • Vertex fit for Λ , and Λ_{h} $\Lambda_{\rm b}$ • Cascade decays like $\Sigma \rightarrow \Lambda \gamma$ or $\Xi^0 \rightarrow \Lambda \pi^0$ suppressed by requiring Λ vertex in Λ momentum direction π Selection cuts on Momentum, impact par., decay length → Optimized on $S/\sqrt{(S+B)}$ with S B^0 from MC and B from sidebands K → Normalized to $B^0 \rightarrow J/\psi K_s$ with $K_s \rightarrow \pi^+\pi^-$ ² π⁻

$$\Lambda_{\rm b} \rightarrow J/\psi \Lambda Fit$$

6.1 fb⁻¹

- Signal: double Gaussian
- Background:
 2nd order polynomial
- Relative efficiency
 from MC
- $\epsilon = 2.37 \pm 0.05$ (stat.)

$\Lambda_{\rm b} \rightarrow J/\psi \Lambda \text{ Result}$

$$\sigma_{rel} = \frac{f(b \to \Lambda_b) \cdot B(\Lambda_b \to J/\psi\Lambda)}{f(b \to B^0) \cdot B(B^0 \to J/\psi K_s^0)} = \frac{N_{\Lambda_b \to J/\psi\Lambda}}{N_{B^0 \to J/\psi K_s^0}} \cdot \frac{B(K_s^0 \to \pi^+\pi^-)}{B(\Lambda \to p\pi^-)} \cdot \varepsilon$$

- Systematic uncertainties: Fit model (5.6%), relative efficiency [B⁰ decay model] (2.0%), cross-feed (2.3%), Λ_b polarization (7.2%)
- Several cross-checks (sub-samples, data-MC comparisons)

$$\sigma_{rel} = 0.345 \pm 0.034 \text{ (stat.)} \qquad \text{Factor } \sim 3$$

$$\pm 0.033 \text{ (syst.)} \pm 0.003 \text{ (PDG)} \qquad \text{improvement}$$

 $f(b \to \Lambda_b) \cdot \mathcal{B}(\Lambda_b \to J/\psi\Lambda) =$

 $[6.01 \pm 0.60 \text{ (stat.)} \pm 0.58 \text{ (syst.)}]$

Submitted to PRD-RC arXiv:1105.0690

 $\pm 0.28 \text{ (PDG)}] \times 10^{-5} = (6.01 \pm 0.88) \times 10^{-5}$

Charm Baryons

- $\Sigma_{c}^{(*)}$: Isospin triplets J^P=1/2⁺: $\Sigma_{c}(2455)$, J^P=3/2⁺: $\Sigma_{c}(2520)$
- Λ_c^{*}: Λ_c orbital excitations
 J^P=1/2⁻: Λ_c(2595), J^P=3/2⁻: Λ_c(2625)

$\Lambda_c(2595)^+ - \Lambda_c^+$ MASS DIFFERENCE

VALUE (MeV)	EVTS	DOCUMENT ID		TECN	COMMENT
308.9±0.6 OUR FIT	Error includ	es scale factor of	1.1.		
308.9 \pm 0.6 OUR AVE	RAGE Error	includes scale fac	ctor of	1.1.	
$309.7 \pm 0.9 \pm 0.4$	19	ALBRECHT	97	ARG	e^+e^-pprox 10 GeV
$309.2\!\pm\!0.7\!\pm\!0.3$	14 ± 4.5	FRABETTI	96	E687	$\gamma{ m Be}$, \overline{E}_\gammapprox 220 GeV
$307.5\!\pm\!0.4\!\pm\!1.0$	112 ± 17	EDWARDS	95	CLE2	$e^+e^-\stackrel{'}{pprox}$ 10.5 GeV
\bullet \bullet \bullet We do not use	the following	data for averages	, fits,	limits, e	tc. ● ● ●
305.6±0.3		¹ BLECHMAN	03		Threshold shift

¹BLECHMAN 03 finds that a more sophisticated treatment than a simple Breit-Wigner for the proximity of the threshold of the dominant decay, $\Sigma_c(2455)\pi$, lowers the $\Lambda_c(2595)^+ - \Lambda_c^+$ mass difference by 2 or 3 MeV.

Charm Baryons Trigger and Selection

- Trigger on a pair of displaced tracks
 - → ~50% from b hadron decays
- Selection of $\Lambda_c^+ \rightarrow p \ K^- \pi^+$ with Neural Network (NN)

- Input variables: particle ID, decay time, decay angles, fit quality
- NN training on data only using sPlot technique

Charm Baryons Data Sample

> $\Sigma_c^{(*)}$ and Λ_c^* selection with NN trained on data (sPlot)

Charm Baryon Spectra

Fit of mass difference • $\Sigma_c^{(*)}$: $\Delta M = M(\Lambda_c \pi) - M(\Lambda_c)$ • Λ_c^{*} : $\Delta M = M(\Lambda_c \pi \pi) - M(\Lambda_c)$

 $\Sigma_{c}^{(*)}$ Fit

Signal:

 nonrelativistic Breit-Wigner convolved with triple Gaussian resolution function

Background:

- Combinatorial: 2^{nd} order polynomial from Λ_c sideband, Gaussian for D* reflection for $\Sigma_c^{(*)0}$ case
- Λ_c with random π : 3rd order pol.
- $\Lambda_c(2625) \rightarrow \Lambda_c \pi \pi$ feed down: derived from $\Lambda_c(2625) \rightarrow \Lambda_c \pi \pi$ yield

Hadron 2011, 16.06.2011

Hadron	$\Delta M \; [{ m MeV}/c^2]$	$\Gamma \; [{ m MeV}/c^2]$
$\Sigma_{c}(2455)^{++}$	$167.44 \pm 0.04 \pm 0.12$	$2.34 \pm 0.13 \pm 0.45$
$\Sigma_{c}(2455)^{0}$	$167.28 \pm 0.03 \pm 0.12$	$1.65 \pm 0.11 \pm 0.49$
$\Sigma_{c}(2520)^{++}$	$230.73 \pm 0.56 \pm 0.16$	$15.03 \pm 2.12 \pm 1.36$
$\Sigma_{c}(2520)^{0}$	$232.88 \pm 0.43 \pm 0.16$	$12.51 \pm 1.82 \pm 1.37$

FOCUS

CLEO

 Systematic uncertainties: resolution model, mass scale, fit model

Masses and widths consistent with world averages

 $\frac{\Sigma_{c}(2455)^{++}}{\Sigma_{c}(2455)^{++}}$

 Λ_{c}^{*} Fit

Signal:

- Threshold effect in $\Lambda_c^{*+} \rightarrow \Sigma_c^{0,++} \pi^{+,-}$ taken into account by mass dependent width
- Pion coupling constant h₂

Background:

- Combinatorial: 2^{nd} order polynomial from Λ_c sidebands
- Λ_c with random pions: 2nd order polynomial
- Σ_c with random pion: threshold function according to Σ_c line shape

$\Lambda_{c}(2625)$ Result

• $\Delta M (MeV/c^2) =$ 341.65 ± 0.04 ± 0.12

 Significantly improved precision

$\Lambda_{c}(2595)$ Threshold Effect

Λ_c line shape not
 described by normal
 Breit-Wigner

- Increase of χ² from 227 to 286 (for ndf=206)
- Discrepancy only observable because of high statistics
- Additional systematic uncertainty due to Σ_c parameters

$\Lambda_{c}(2595)$ Result

• $\Delta M = (305.79 \pm 0.14 \pm 0.20) \text{ MeV/c}^2$

- Significantly improved precision
- Predicted threshold effect confirmed

Submitted to PRD arXiv:1105.5995

Leads to significantly smaller mass

