Baryon Spectroscopy and Resonances

Robert Edwards Jefferson Lab

Hadron 2011

Collaborators:
J. Dudek, B. Joo, D. Richards, S. Wallace
Auspices of the Hadron Spectrum Collaboration

Where are the "Missing" Baryon Resonances?

- What are collective modes?
- Is there "freezing" of degrees of freedom?
-What is the structure of the states?

Where are the "Missing" Baryon Resonances?

- What are collective modes?
- Is there "freezing" of degrees of freedom?
-What is the structure of the states?

Nucleon \& Delta spectrum
PDG uncertainty on
$B-W$ mass

Delta Mass Spectrum (Exp): $4^{*}, 3^{*}, 2^{*}$

Where are the "Missing" Baryon Resonances?

- What are collective modes?
- Is there "freezing" of degrees of freedom?
-What is the structure of the states?

QM predictions

Nucleon \& Delta spectrum
 PDG uncertainty on
 B-W mass

Nucleon Mass Spectrum (Exp): $4^{*}, 3^{*}, 2^{*}$

Delta Mass Spectrum (Exp): $4^{*}, 3^{*}, 2^{*}$

Where are the "Missing" Baryon Resonances?

- What are collective modes?
- Is there "freezing" of degrees of freedom?
-What is the structure of the states?

QM predictions
Nucleon \& Delta spectrum
PDG uncertainty on
B-W mass

Nucleon Mass Spectrum (Exp): 4*, 3*, 2*

Delta Mass Spectrum (Exp): $4^{*}, 3^{*}, 2^{*}$

Spectrum from variational method

Two-point correlator

$$
C_{i j}(t)=\langle 0| \Phi_{i}(t) \Phi_{j}^{\dagger}(0)|0\rangle
$$

$$
C_{i j}(t)=\sum e^{-E_{\mathfrak{n}} t}\langle 0| \Phi_{i}(0)|\mathfrak{n}\rangle\langle\mathfrak{n}| \Phi_{j}^{\dagger}(0)|0\rangle \quad Z_{i}^{\mathfrak{n}} \equiv\langle\mathfrak{n}| \Phi_{i}^{\dagger}|0\rangle
$$

Spectrum from variational method

Two-point correlator

$$
C_{i j}(t)=\langle 0| \Phi_{i}(t) \Phi_{j}^{\dagger}(0)|0\rangle
$$

$$
C_{i j}(t)=\sum_{\mathfrak{n}} e^{-E_{\mathfrak{n}} t}\langle 0| \Phi_{i}(0)|\mathfrak{n}\rangle\langle\mathfrak{n}| \Phi_{j}^{\dagger}(0)|0\rangle \quad Z_{i}^{\mathfrak{n}} \equiv\langle\mathfrak{n}| \Phi_{i}^{\dagger}|0\rangle
$$

Matrix of correlators

$$
C(t)=\left(\begin{array}{ccc|}
\langle 0| \Phi_{1}(t) \Phi_{1}^{\dagger}(0)|0\rangle & \langle 0| \Phi_{1}(t) \Phi_{2}^{\dagger}(0)|0\rangle & \cdots \\
\langle 0| \Phi_{2}(t) \Phi_{1}^{\dagger}(0)|0\rangle & \langle 0| \Phi_{2}(t) \Phi_{2}^{\dagger}(0)|0\rangle & \cdots \\
\vdots & & \ddots
\end{array}\right)
$$

Spectrum from variational method

Two-point correlator

$$
C_{i j}(t)=\langle 0| \Phi_{i}(t) \Phi_{j}^{\dagger}(0)|0\rangle
$$

$$
C_{i j}(t)=\sum_{\mathfrak{n}} e^{-E_{\mathfrak{n}} t}\langle 0| \Phi_{i}(0)|\mathfrak{n}\rangle\langle\mathfrak{n}| \Phi_{j}^{\dagger}(0)|0\rangle \quad Z_{i}^{\mathfrak{n}} \equiv\langle\mathfrak{n}| \Phi_{i}^{\dagger}|0\rangle
$$

Matrix of correlators

$$
C(t)=\left(\begin{array}{ccc|}
\langle 0| \Phi_{1}(t) \Phi_{1}^{\dagger}(0)|0\rangle & \langle 0| \Phi_{1}(t) \Phi_{2}^{\dagger}(0)|0\rangle & \ldots \\
\langle 0| \Phi_{2}(t) \Phi_{1}^{\dagger}(0)|0\rangle & \langle 0| \Phi_{2}(t) \Phi_{2}^{\dagger}(0)|0\rangle & \ldots \\
\vdots & & \ddots
\end{array}\right)
$$

"Rayleigh-Ritz method"
Diagonalize:
eigenvalues \rightarrow spectrum
eigenvectors \rightarrow spectral "overlaps" $Z_{i}{ }^{n}$

Spectrum from variational method

Two-point correlator

$$
C_{i j}(t)=\langle 0| \Phi_{i}(t) \Phi_{j}^{\dagger}(0)|0\rangle
$$

$$
C_{i j}(t)=\sum_{\mathfrak{n}} e^{-E_{\mathfrak{n}} t}\langle 0| \Phi_{i}(0)|\mathfrak{n}\rangle\langle\mathfrak{n}| \Phi_{j}^{\dagger}(0)|0\rangle \quad Z_{i}^{\mathfrak{n}} \equiv\langle\mathfrak{n}| \Phi_{i}^{\dagger}|0\rangle
$$

Matrix of correlators

$$
C(t)=\left(\begin{array}{ccc|}
\langle 0| \Phi_{1}(t) \Phi_{1}^{\dagger}(0)|0\rangle & \langle 0| \Phi_{1}(t) \Phi_{2}^{\dagger}(0)|0\rangle & \cdots \\
\langle 0| \Phi_{2}(t) \Phi_{1}^{\dagger}(0)|0\rangle & \langle 0| \Phi_{2}(t) \Phi_{2}^{\dagger}(0)|0\rangle & \cdots \\
\vdots & & \ddots
\end{array}\right)
$$

"Rayleigh-Ritz method"
Diagonalize:
eigenvalues \rightarrow spectrum
eigenvectors \rightarrow spectral "overlaps" $Z_{i}{ }^{n}$

Each state optimal combination of Φ_{i}

$$
\Omega^{(\mathfrak{n})}=\sum_{i} v_{i}^{(\mathfrak{n})} \Phi_{i}
$$

Spectrum from variational method

Two-point correlator
$C_{i j}(t)=\langle 0| \Phi_{i}(t) \Phi_{j}^{\dagger}(0)|0\rangle$

$$
C_{i j}(t)=\sum e^{-E_{\mathfrak{n}} t}\langle 0| \Phi_{i}(0)|\mathfrak{n}\rangle\langle\mathfrak{n}| \Phi_{j}^{\dagger}(0)|0\rangle \quad Z_{i}^{\mathfrak{n}} \equiv\langle\mathfrak{n}| \Phi_{i}^{\dagger}|0\rangle
$$

Matrix of correlators

$$
C(t)=\left(\begin{array}{ccc|}
\langle 0| \Phi_{1}(t) \Phi_{1}^{\dagger}(0)|0\rangle & \langle 0| \Phi_{1}(t) \Phi_{2}^{\dagger}(0)|0\rangle & \cdots \\
\langle 0| \Phi_{2}(t) \Phi_{1}^{\dagger}(0)|0\rangle & \langle 0| \Phi_{2}(t) \Phi_{2}^{\dagger}(0)|0\rangle & \cdots \\
\vdots & & \ddots
\end{array}\right)
$$

"Rayleigh-Ritz method"
Diagonalize:
eigenvalues \rightarrow spectrum
eigenvectors \rightarrow spectral "overlaps" $Z_{i}{ }^{n}$

Each state optimal combination of Φ_{i}

$$
\Omega^{(\mathfrak{n})}=\sum_{i} v_{i}^{(\mathfrak{n})} \Phi_{i}
$$

Benefit: orthogonality for near degenerate states

Baryon operators

Construction : permutations of 3 objects

Baryon operators

Construction: permutations of 3 objects

- Symmetric:
-e.g., uud+udu+duu
- Antisymmetric:
-e.g., uud-udu+duu-...
- Mixed: (antisymmetric \& symmetric)
-e.g., udu - duu \& 2duu-udu-uud

Baryon operators

Construction : permutations of 3 objects

- Symmetric:
-e.g., uud+udu+duu
- Antisymmetric:

Multiplication rules:
-Symmetric Antisymmetric \rightarrow Antisymmetric

- MixedxMixed \rightarrow Symmetric \oplus Antisymmetric \oplus Mixed
-e.g., uud-udu+duu-...
- Mixed: (antisymmetric \& symmetric)
-e.g., udu - duu \& 2duu - udu - uud

Baryon operators

Construction: permutations of 3 objects

```
- Symmetric:
    -e.g., uud+udu+duu
- Antisymmetric:
```

Multiplication rules:

- Symmetric Antisymmetric \rightarrow Antisymmetric
- MixedxMixed \rightarrow Symmetric \oplus Antisymmetric \oplus Mixed

```
-e.g., uud-udu+duu-...
- Mixed: (antisymmetric \& symmetric)
-e.g., udu - duu \& 2duu-udu - uud
```

Color antisymmetric \rightarrow Require \quad Space \times [Flavor x Spin] symmetric

Baryon operators

Construction: permutations of 3 objects

```
- Symmetric:
    \bullete.g., uud+udu+duu
- Antisymmetric:
```

Multiplication rules:

- Symmetric Antisymmetric \rightarrow Antisymmetric
- MixedxMixed \rightarrow Symmetric \oplus Antisymmetric \oplus Mixed

```
-e.g., uud-udu+duu-...
- Mixed: (antisymmetric \& symmetric)
-e.g., udu - duu \& 2duu-udu-uud
Color antisymmetric \(\rightarrow\) Require Space \(\times\) [Flavor x Spin] symmetric
```

Space: couple covariant derivatives onto single-site spinors - build any J,M

$$
\begin{array}{r}
\left.\Phi^{J M} \leftarrow\left(C G C^{\prime} s\right)_{i, j, k}[\vec{D}]_{i}[\vec{D}]_{j}[\Psi]_{k}\right] \\
J \leftarrow \mathbf{1} \otimes \mathbf{1} \otimes \mathcal{S}
\end{array}
$$

Baryon operators

Construction: permutations of 3 objects

- Symmetric:
-e.g., uud+udu+duu
- Antisymmetric:

Multiplication rules:

- Symmetric Antisymmetric \rightarrow Antisymmetric
- MixedxMixed \rightarrow Symmetric \oplus Antisymmetric \oplus Mixed
-e.g., uud-udu+duu-...
- Mixed: (antisymmetric \& symmetric)
-e.g., udu - duu \& 2duu-udu-uud
Color antisymmetric \rightarrow Require Space \times [Flavor \times Spin] symmetric

Space: couple covariant derivatives onto single-site spinors - build any J,M

$$
\frac{\Phi^{J M} \leftarrow\left(C G C^{\prime} s\right)_{i, j, k}[\vec{D}]_{i}[\vec{D}]_{j}[\Psi]_{k}}{J \leftarrow \mathbf{1} \otimes \mathbf{1} \otimes \mathcal{S}}
$$

Classify operators by permutation symmetries:

- Leads to rich structure

Baryon operator basis

3-quark operators \& up to two covariant derivatives: some JP

$$
\left([\text { Flavor } \otimes \text { Dirac }] \otimes \text { Space }_{\text {symmetry }}\right)^{J^{P}}
$$

Baryon operator basis

3-quark operators \& up to two covariant derivatives: some JP
$\left([\text { Flavor } \otimes \text { Dirac }] \otimes \text { Space }_{\text {symmetry }}\right)^{J^{P}}$

Spatial symmetry classification:
e.g., Nucleons: $N^{2 S+1} L_{\pi} J^{P}$

${ }^{\text {JP }}$	\#ops	E.g., spatial symmetries	
J=1/2	24	$N^{2} P_{M}{ }^{\frac{1}{2}-}$	$N{ }^{4} \mathrm{P}_{\mathrm{M}}{ }^{\frac{1}{2}}$
J=3/2	28	$N^{2} P_{M} 3 / 2$	$N^{4} \mathrm{P}_{\mathrm{M}} 3 / 2$
J=5/2	16	$N{ }^{4} \mathrm{P}_{\mathrm{M}} 5 / 2$	
$\mathrm{J}=1 / 2^{+}$	24	$\begin{aligned} & N^{2} S_{S} \frac{1}{2}+ \\ & N^{2} S_{M} \frac{1}{2}+ \end{aligned}$	$\begin{aligned} & N^{4} D_{M}{ }^{\frac{1}{2}+} \\ & N^{2} P_{A} \frac{1}{2}+ \end{aligned}$
J=3/2+	28	$\begin{aligned} & N^{2} D_{S} 3 / 2^{+} \\ & N^{2} D_{M} 3 / 2^{+} \\ & N^{2} P_{A} 3 / 2^{+} \end{aligned}$	$\begin{aligned} & N^{4} S_{M} 3 / 2^{+} \\ & N^{4} D_{M} 3 / 2^{+} \end{aligned}$
$\mathrm{J}=5 / 2^{+}$	16	$\begin{aligned} & N^{2} D_{S} 5 / 2^{+} \\ & N^{2} D_{M} 5 / 2^{+} \end{aligned}$	$N^{4} D_{M} 5 / 2^{+}$
J=7/2+	4	$N^{4} \mathrm{D}_{\mathrm{M}} 7 / 2^{+}$	

Baryon operator basis

3-quark operators \& up to two covariant derivatives: some JP
$\left([\text { Flavor } \otimes \text { Dirac }] \otimes \text { Space }_{\text {symmetry }}\right)^{J^{P}}$

Spatial symmetry classification:
e.g., Nucleons: $N^{2 S+1} L_{\pi} J^{P}$

By far the largest operator basis ever used for such calculations

${ }^{\text {JP }}$	\#ops	E.g., spatial symmetries	
J=1/2	24	$N^{2} P_{M}{ }^{\frac{1}{2}-}$	$N{ }^{4} \mathrm{P}_{\mathrm{M}}{ }^{\frac{1}{2}}$
J=3/2	28	$N^{2} P_{M} 3 / 2$	$N^{4} \mathrm{P}_{\mathrm{M}} 3 / 2$
J=5/2	16	$N{ }^{4} \mathrm{P}_{\mathrm{M}} 5 / 2$	
$\mathrm{J}=1 / 2^{+}$	24	$\begin{aligned} & N^{2} S_{S} \frac{1}{2}+ \\ & N^{2} S_{M} \frac{1}{2}+ \end{aligned}$	$\begin{aligned} & N^{4} D_{M}{ }^{\frac{1}{2}+} \\ & N^{2} P_{A} \frac{1}{2}+ \end{aligned}$
J=3/2+	28	$\begin{aligned} & N^{2} D_{S} 3 / 2^{+} \\ & N^{2} D_{M} 3 / 2^{+} \\ & N^{2} P_{A} 3 / 2^{+} \end{aligned}$	$\begin{aligned} & N^{4} S_{M} 3 / 2^{+} \\ & N^{4} D_{M} 3 / 2^{+} \end{aligned}$
$\mathrm{J}=5 / 2^{+}$	16	$\begin{aligned} & N^{2} D_{S} 5 / 2^{+} \\ & N^{2} D_{M} 5 / 2^{+} \end{aligned}$	$N^{4} D_{M} 5 / 2^{+}$
J=7/2+	4	$N^{4} \mathrm{D}_{\mathrm{M}} 7 / 2^{+}$	

Spin identified Nucleon \& Delta spectrum

arXiv:1104.5152
$\mathrm{m}_{\pi} \sim 520 \mathrm{MeV}$

Spin identified Nucleon \& Delta spectrum

arXiv:1104.5152
$\mathrm{m}_{\pi} \sim 520 \mathrm{MeV}$

Spin identified Nucleon \& Delta spectrum

arXiv:1104.5152
$\mathrm{m}_{\pi} \sim 520 \mathrm{MeV}$

Spin identified Nucleon \& Delta spectrum

Spin identified Nucleon \& Delta spectrum

arXiv:1104.5152
$\mathrm{m}_{\pi} \sim 520 \mathrm{MeV}$

Spin identified Nucleon \& Delta spectrum

arXiv:1104.5152
$\mathrm{m}_{\pi} \sim 520 \mathrm{MeV}$

Spin identified Nucleon \& Delta spectrum

Spin identified Nucleon \& Delta spectrum

Discern structure: spectral overlaps
arXiv:1104.5152
$\mathrm{m}_{\pi} \sim 520 \mathrm{MeV}$

$\mathrm{N}=2 \quad \mathrm{~J}^{+} \quad$ Nucleon \& Delta spectrum

Discern structure: spectral overlaps

$\mathrm{N}=2 \quad \mathrm{~J}^{+} \quad$ Nucleon \& Delta spectrum

Discern structure: spectral overlaps

Significant mixing in J^{+}

Roper??

Near degeneracy in $\frac{1}{2}+\quad$ consistent with $\mathrm{SU}(6) \quad \mathrm{O}(3)$ counting, but heavily mixed

Discrepancies??
Operator basis - spatial structure

Roper??

Near degeneracy in $\frac{1}{2}+\quad$ consistent with $\mathrm{SU}(6) \quad \mathrm{O}(3)$ counting, but heavily mixed

Spectrum of finite volume field

The idea: 1 dim quantum mechanics
Two spin-less bosons: $\psi(\mathrm{x}, \mathrm{y})=\mathrm{f}(\mathrm{x}-\mathrm{y}) \rightarrow \mathrm{f}(\mathrm{z}) \quad\left[-\frac{1}{m} \frac{d^{2}}{d z^{2}}+V(z)\right] f(z)=E f(z)$
Solutions $f(z) \rightarrow \cos [k|z|+\delta(k)], \quad E=k^{2} / m$

Quantization condition when $-\mathrm{L} / 2<\mathrm{z}<\mathrm{L} / 2$

$$
k L+2 \delta(k)=0 \quad \bmod 2 \pi
$$

Same physics in 4 dim version (but messier) Provable in a QFT (and relativistic)

Finite volume scattering

Scattering in a periodic cubic box (length L)

- Discrete energy levels in finite volume

$$
\begin{gathered}
\text { e.g. } \\
\pi \pi \rightarrow \rho \rightarrow \pi \pi \\
\pi N \rightarrow \Delta \rightarrow \pi N
\end{gathered}
$$

At some L, have discrete excited energies

$$
E \rightarrow k ; \quad k L+2 \delta(k)=0 \quad \bmod 2 \pi
$$

-T-matrix amplitudes \rightarrow partial waves
Finite volume energy levels $\mathbf{E}(\mathrm{L}) \leftrightarrow \boldsymbol{\delta}(\mathrm{E})$

Resonances

Scattering of composite objects in non-perturbative field theory

Resonances

Scattering of composite objects in non-perturbative field theory

Resonances

Manifestation of "decay" in Euclidean space

Can extract pole position

Resonances

Scattering of composite objects in non-perturbative field theory

Extracted coupling: stable in pion mass

Hadronic Decays

Some candidates: determine phase shift Somewhat elastic

Isoscalar \& isovector meson spectrum

Isoscalar \& isovector meson spectrum

Isoscalar \& isovector meson spectrum

Will need to build PWA within mesons

Summary \& prospects

Results for baryon excited state spectrum:

- No "freezing" of degrees of freedom nor parity doubling
- Broadly consistent with non-relativistic quark model
- Add multi-particles \rightarrow baryon spectrum becomes denser

Summary \& prospects

Results for baryon excited state spectrum:

- No "freezing" of degrees of freedom nor parity doubling
- Broadly consistent with non-relativistic quark model
- Add multi-particles \rightarrow baryon spectrum becomes denser

Short-term plans: resonance determination!

- Lighter pion masses (230MeV available)
- Extract couplings in multi-channel systems (with $\pi, \eta, \mathrm{K} \ldots$)

Summary \& prospects

Results for baryon excited state spectrum:

- No "freezing" of degrees of freedom nor parity doubling
- Broadly consistent with non-relativistic quark model
- Add multi-particles \rightarrow baryon spectrum becomes denser

Short-term plans: resonance determination!

- Lighter pion masses (230MeV available)
- Extract couplings in multi-channel systems (with $\pi, \eta, \mathrm{K} \ldots$)

T-matrix "poles" from Euclidean space?

Summary \& prospects

Results for baryon excited state spectrum:

- No "freezing" of degrees of freedom nor parity doubling
- Broadly consistent with non-relativistic quark model
- Add multi-particles \rightarrow baryon spectrum becomes denser

Short-term plans: resonance determination!

- Lighter pion masses (230MeV available)
- Extract couplings in multi-channel systems (with π, $\eta, \mathrm{K} \ldots$..)

T-matrix "poles" from Euclidean space?

Yes! [with caveats]

- Also complicated
- But all Minkowski information is there

Summary \& prospects

Results for baryon excited state spectrum:

- No "freezing" of degrees of freedom nor parity doubling
- Broadly consistent with non-relativistic quark model
- Add multi-particles \rightarrow baryon spectrum becomes denser

Short-term plans: resonance determination!

- Lighter pion masses (230MeV available)
- Extract couplings in multi-channel systems (with π, $\eta, \mathrm{K} . .$.)

T-matrix "poles" from Euclidean space?

Yes! [with caveats]

- Also complicated
- But all Minkowski information is there

Optimistic: see confluence of methods (an "amplitude analysis")

- Develop techniques concurrently with decreasing pion mass

Backup slides

- The end

Lattice QCD

Goal: resolve highly excited states

$$
N_{f}=2+1(u, d+s)
$$

Anisotropic lattices:

$$
\left(a_{s}\right)^{-1} \sim 1.6 \mathrm{GeV},\left(a_{\mathrm{t}}\right)^{-1} \sim 5.6 \mathrm{GeV}
$$

Where are the "Missing" Baryon Resonances?

- What are collective modes?
- Is there "freezing" of degrees of freedom?
-What is the structure of the states?

Capstick, Isgur;
Capstick, Roberts

Operators are not states

Two-point correlator

$$
\begin{aligned}
& C(t)=\langle 0| \Phi^{\prime}(t) \Phi(0)|0\rangle \\
& C(t)=\sum_{\mathfrak{n}} e^{-E_{\mathfrak{n}} t}\langle 0| \Phi^{\prime}(0)|\mathfrak{n}\rangle\langle\mathfrak{n}| \Phi(0)|0\rangle
\end{aligned}
$$

Full basis of operators: many operators can create same state
Spectral "overlaps" $\left\langle\mathfrak{n} ; J^{P}\right| \Phi_{i}|0\rangle=Z_{i}^{\mathfrak{n}}$

States may have subset of allowed symmetries

Nucleon J-

Spectrum of finite volume field theory

Missing states: "continuum" of multi-particle scattering states

Infinite volume:
continuous spectrum
$E(p)=2 \sqrt{m_{\pi}^{2}+p^{2}}$

Finite volume: discrete spectrum

Deviation from (discrete) free energies depends upon interaction - contains information about scattering phase shift
$\Delta \mathrm{E}(\mathrm{L}) \leftrightarrow \delta(\mathrm{E}):$ Lüscher method

$I=1 \pi \pi$: the " ρ "

Extract $\delta_{1}(\mathrm{E})$ at discrete E

Extracted coupling: stable in pion mass

Feng, Jansen, Renner, 1011.5288

Form Factors

What is a form-factor off of a resonance?
What is a resonance? Spectrum first!

Extension of scattering techniques:
-Finite volume matrix element modified

$$
\langle N| J_{\mu}\left|N^{*}\right\rangle_{\infty}\left(Q^{2}, E\right) \leftarrow\left[\delta^{\prime}(E)+\Phi^{\prime}(E)\right]\langle N| J_{\mu}\left|N^{*}\right\rangle_{\text {volume }}
$$

Range: few GeV^{2}
Limitation: spatial lattice spacing

