Latest developments in the Spectroscopy of Heavy Hadrons

Fulvia De Fazio INFN - Bari

Question: recent discoveries in charm(onium) and bottom (onium) spectra might be exotic states?

Collaborators: P. Colangelo, R. Ferrandes, S. Nicotri, A. Ozpineci, M. Rizzi

F. De Fazio INFN Bari Hadron 2011

Open charm/beauty states

- $\mathbf{B}_{s1}(5830), \mathbf{B}_{s2}^{*}(5840)$
- **B**₁(5734), **B**^{*}₂(5738)

- D_{sJ}(2860), D_{sJ}(2710), D_{sJ}(3040)
- D_{sJ}(2632)
- D(2550), D(2600), D(2750), D(2760)
- **D**_{s0}^{*}(2317), **D**'_{s1}(2460)
- D₀(2308), D'₁(2440)

Open charm/beauty states

• **D**_{s0}^{*}(2317), **D**'_{s1}(2460)

• D₀(2308), D'₁(2440)

- D(2550), D(2600), D(2750), D(2760)
- $D_{sJ}(2632)$ \longrightarrow Seen only by SELEX, never confirmed • $D_{sI}(2860), D_{sI}(2710), D_{sI}(3040)$

- **B**₁(5734), **B**^{*}₂(5738)
- $\mathbf{B}_{s1}(5830), \mathbf{B}_{s2}^{*}(5840)$

- $\mathbf{B}_{s1}(5830), \mathbf{B}_{s2}^{*}(5840)$
- $\mathbf{B}_{1}(5734), \mathbf{B}_{2}^{*}(5738)$

• D(2550), D(2600), D(2750), D(2760)

• D_{sI}(2632)

 $(\mathbf{D}_{s0}^{*}(2317), \mathbf{D}'_{s1}(2460))$

• D₀(2308), D'₁(2440)

D_{sI}(2860), **D**_{sI}(2710), **D**_{sI}(3040)

→ Seen only by SELEX, never confirmed

Hadrons containing a single heavy quark Q

Spin of the heavy quark and of the light degrees of freedom decoupled in the $m_Q \rightarrow \infty$ limit

$$\vec{J}_M = \vec{s}_\ell + \vec{s}_Q$$
 spin

$$\vec{s}_{\ell} = \vec{L} + \vec{s}_{q}$$

angular momentum of the light degrees of freedom (conserved)

Mesons classified as doublets

- In the HQ limit:
- states with the same s_l^{P} degenerate
- finite m_Q corrections
- remove degeneracy between the states of the same doublet
 induce mixing between states with the same J^P

$Q\overline{q}$ multiplets

Narrow peak in the $D_s^+ \pi^0$ mass distribution: $D_{sI}(2317)$

observed width consistent with exp. Resolution (<10 MeV) intrinsic width smaller

F. De Fazio INFN Bari Hadron 2011

$D_{sJ}(2317)$ quantum numbers

Another narrow peak in the $D_s^{*+}\pi^0$ mass distribution: $D_{sI}(2460)$

F. De Fazio INFN Bari Hadron 2011

D_{sI} produced in B decays: $B \rightarrow D D_{sI}$

F. De Fazio INFN Bari Hadron 2011

$D_{sI}(2317) \& D_{sI}(2460)$

The two narrow states identified as the $J^{P}=(0^+,1^+)$ lowest lying $c\bar{s}$ states with L=1

- are data consistent with this interpretation?
- are data consistent with other interpretations?

Understanding if $D_{sJ}(2317)$ and $D_{sJ}(2460)$ can be identified with the $J^{P}=(0^+,1^+)$ lowest lying \overline{cs} states with L=1 means checking that

• the isospin violating decays to $D_s^{(*)}\pi^0$ proceed at a rate larger than the radiative modes

• the total rate should not exceed the exp upper bound $\Gamma \leq 10 \text{ MeV}$

Hadronic modes

The decays $D_{s0}^{*}(D_{s1}^{*}) \rightarrow D_{s}^{(*)} \pi^{0}$ can be described as the result of the strong transition $D_{s0}(D_{s1}^{*}) \rightarrow D_{s}^{(*)} \eta$ followed by the π - η mixing P. Colangelo, FDFPLB570, 180P. Colangelo, R. Ferrandes, FDFMPLA19, 2083

Radiative modes: Light-cone sum rule predictions

Initial st	ate	Final state	LCQSR	VMD [2, 3]	QM [5]	QM [6]	
$D_{sJ}^{*}(231)$	7)	$D_s^*\gamma$	4-6	0.85	1.9	1.74	
$D_{sJ}(246)$	(0)	$D_s\gamma$	19-29	3.3	6.2	5.08	
		$D_s^*\gamma$	0.6-1.1	1.5	5.5	4.66	
		$D_{sJ}^{*}(2317)\gamma$	0.5 - 0.8	+	0.012	2.74	
				$(m_c \rightarrow \infty)$			
		D _{s1} (2460) [—] modes are Mode	e charge conjugates	of the modes below. Fraction (Γ _i /Γ)			
	Γ ₁ Γ ₂ Γ ₃ Γ ₄	$D_{s}^{*+} \pi^{0} \\ D_{s}^{+} \gamma \\ D_{s}^{+} \pi^{+} \pi^{-} \\ D_{s}^{*+} \gamma$		$\begin{array}{cccc} (48 \pm 11 \) \% \\ \hline (18 \pm 4 \) \% \\ \hline (4.3 \pm 1.3) \% \\ < 8 \ \% \end{array}$			
	Γ ₅ Γ ₆ Γ ₇ Γ ₈	$D_{s0}^{*}(2317)^{+} \gamma D_{s}^{+} \pi^{0} D_{s}^{+} \pi^{0} \pi^{0} D_{s}^{+} \gamma \gamma $		(3.7 ⁺ 5.1)%	P. Co PRD	olangelo, A. (972 , 074004	Dzpineci

The largest computed rate corresponds to the largest measured radiative branching ratio

 $D_{sI}(2317)$ and $D_{sI}(2460)$ behave as ordinary cs mesons

 $D_{sI}(2860)$

Quantum number assignment required in order to identify it Possibilities: - low lying state not yet observed - radial excitation of an already observed state

Only states that can decay to the observed mode DK are allowed

 $D_{sI}(2710)$

Belle Collab.: analysis of the mode

$$B^+ \rightarrow \overline{D}{}^0 D^0 K^+$$

F. De Fazio INFN Bari Hadron 2011

m(D K) GeV/c³

$D_{sJ}(2860) \& D_{sJ}(2710)$

predictions on allowed decay rates can help to distinguish among the various possibilities

HQ limit: the members of the doublets are described by effective fields:

 $\mathbf{\widehat{L}} \left\{ \mathbf{s}_{\ell}^{\mathbf{P}} = \frac{1}{2} \right\} \quad H_a = \frac{1+\cancel{2}}{2} \left[P_{a\mu}^* \gamma^{\mu} - P_a \gamma_5 \right]$ $\begin{bmatrix}
\mathbf{s}_{\ell}^{\mathbf{P}} = \frac{1}{2}^{+} & S_{a} = \frac{1 + \frac{1}{2}}{2} \begin{bmatrix} P_{1a}^{\prime \mu} \gamma_{\mu} \gamma_{5} - P_{0a}^{*} \end{bmatrix} \\
\begin{bmatrix}
\mathbf{s}_{\ell}^{\mathbf{P}} = \frac{3}{2}^{+} & T_{a}^{\mu} = \frac{1 + \frac{1}{2}}{2} \begin{bmatrix} P_{1a}^{\mu\nu} \gamma_{\nu} - P_{1a\nu} \sqrt{\frac{3}{2}} \gamma_{5} \begin{bmatrix} g^{\mu\nu} - \frac{1}{3} \gamma^{\nu} (\gamma^{\mu} - v^{\mu}) \end{bmatrix} \end{bmatrix}$ $\begin{cases} \mathbf{s}_{\ell}^{\mathbf{P}} = \frac{3}{2}^{-} \\ \mathbf{s}_{\ell}^{\mathbf{P}} = \frac{3}{2}^{-} \\ \mathbf{s}_{\ell}^{\mathbf{P}} = \frac{5}{2}^{-} \\ \mathbf{s}_{\ell}^{\mathbf{P}} = \frac{5}{2}^{-} \\ \end{bmatrix} \\ X_{a}^{\prime \mu \nu} = \frac{1 + \frac{1}{2}}{2} \left\{ P_{3a}^{\mu \nu \sigma} \gamma_{\sigma} - P_{2a}^{*\prime \alpha \beta} \sqrt{\frac{5}{3}} \gamma_{5} \left[g_{\alpha}^{\mu} g_{\beta}^{\nu} - \frac{1}{5} \gamma_{\alpha} g_{\beta}^{\nu} (\gamma^{\mu} - v^{\mu}) \right] \right\} \end{cases}$ $\left. -\frac{1}{5} \gamma_{\beta} g^{\mu}_{\alpha} (\gamma^{\nu} - v^{\nu}) \right|$ 27

$D_{sJ}(2860) \& D_{sJ}(2710)$

Interactions with the emission of a light pseudoscalar meson described by effective Lagrangian terms

$$\mathcal{L}_{H} = g \operatorname{Tr} \left[\bar{H}_{a} H_{b} \gamma_{\mu} \gamma_{5} \mathcal{A}_{ba}^{\mu} \right], \qquad \mathbf{H} \longrightarrow \mathbf{H} \pi$$

$$\mathcal{L}_{S} = h \operatorname{Tr} \left[\bar{H}_{a} S_{b} \gamma_{\mu} \gamma_{5} \mathcal{A}_{ba}^{\mu} \right] + \text{h.c.}, \qquad \mathbf{S} \longrightarrow \mathbf{H} \pi$$

$$\mathcal{L}_{T} = \frac{h'}{\Lambda_{\chi}} \operatorname{Tr} \left[\bar{H}_{a} T_{b}^{\mu} (i D_{\mu} \mathcal{A} + i \not D \mathcal{A}_{\mu})_{ba} \gamma_{5} \right] + \text{h.c.}, \qquad \mathbf{T} \longrightarrow \mathbf{H} \pi$$

$$\mathcal{L}_{X} = \frac{k'}{\Lambda_{\chi}} \operatorname{Tr} \left[\bar{H}_{a} X_{b}^{\mu} (i D_{\mu} \mathcal{A} + i \not D \mathcal{A}_{\mu})_{ba} \gamma_{5} \right] + \text{h.c.}, \qquad \mathbf{X} \longrightarrow \mathbf{H} \pi$$

$$\mathcal{L}_{X'} = \frac{1}{\Lambda_{\chi}^{2}} \operatorname{Tr} \left[\bar{H}_{a} X_{b}^{\mu} (i D_{\mu} \mathcal{A} + i \not D \mathcal{A}_{\mu})_{ba} \gamma_{5} \right] + \text{h.c.}, \qquad \mathbf{X} \longrightarrow \mathbf{H} \pi$$

$$\mathcal{L}_{X'} = \frac{1}{\Lambda_{\chi}^{2}} \operatorname{Tr} \left[\bar{H}_{a} X_{b}^{\mu} (k) \{ D_{\mu}, D_{\nu} \} \mathcal{A}_{\lambda} + (k_{2}) (D_{\mu} D_{\nu} \mathcal{A}_{\lambda} + D_{\nu} D_{\lambda} \mathcal{A}_{\mu}) \right]_{ba} \gamma^{\lambda} \gamma_{5} \right] + \text{h.c.}, \qquad \mathbf{X} \longrightarrow \mathbf{H} \pi$$

$$\mathcal{A}_{\mu ba} = \frac{i}{2} (\xi^{\dagger} \partial_{\mu} \xi - \xi \partial_{\mu} \xi^{\dagger})_{ba} \qquad \xi = e^{\frac{i \mathcal{M}}{f_{\pi}}} \qquad \mathcal{M} = \begin{pmatrix} \sqrt{\frac{1}{2} \pi^{0}} + \sqrt{\frac{1}{6} \eta} & \pi^{+} & K^{+} \\ \pi^{-} & -\sqrt{\frac{1}{2} \pi^{0}} + \sqrt{\frac{1}{6} \eta} & K^{0} \\ K^{-} & \bar{K}^{0} & -\sqrt{\frac{2}{3} \eta} \end{pmatrix}$$

Analogous terms describe interactions involving radial excitation doublets: $g \to \tilde{g}, h \to \tilde{h},...$

$D_{sJ}(2860)$: results for width ratios

P. Colangelo, S. Nicotri, FDF PLB 642, 48

_	$D_{sJ}(2860)$	$D_{sJ}(2860) \to DK$	$\frac{\Gamma(D_{sJ}(2860) \rightarrow D^*K)}{\Gamma(D_{sJ}(2860) \rightarrow DK)}$	$\frac{\Gamma(D_{sJ}(2860) \rightarrow D_s \eta)}{\Gamma(D_{sJ}(2860) \rightarrow DK)}$
1	$s_{\ell}^{P} = \frac{1}{2}^{-}, \ J^{P} = 1^{-}, \ n = 2$	p-wave	1.23	0.27
2	$s_{\ell}^{P} = \frac{1}{2}^{+}, \ J^{P} = 0^{+}, \ n = 2$	s-wave	0	0.34
3	$s_{\ell}^{P} = \frac{\bar{3}^{+}}{2}, \ J^{P} = 2^{+}, \ n = 2$	d-wave	0.63	0.19
4	$s_{\ell}^{P} = \frac{3}{2}^{-}, \ J^{P} = 1^{-}, \ n = 1$	p-wave	0.06	0.23
5	$s_{\ell}^{P} = \frac{5}{2}^{-}, \ J^{P} = 3^{-}, \ n = 1$	f-wave	0.39	0.13
			\preceq	
		Would	explain the observed	narrowness

Our supported option:

5
$$s_{\ell}^{P} = \frac{5}{2}^{-}, \ J^{P} = 3^{-}, \ n = 1$$

- Signal expected in D^{*}K
- Small signal expected also in $D_{_{S}}\eta$

In this case the small width can be attributed to the suppression due to the kaon momentum factor:

$$\overline{\Box}$$

$$\Gamma(D_{sJ} \to DK) = \frac{6}{35} \frac{(k_1 + k_2)^2}{\pi f_\pi^2 \Lambda_\chi^4} \frac{M_D}{M_{D_{sJ}}} q_K^7$$

f-wave transition

Assuming the experimentally measured width would predict in the typical range of these couplings $k_1 + k_2 \approx 0.5$

The spin 2 partner could decay in p-wave due to the effect of $1/m_Q$ corrections

may escape detection

Our conclusion:

 $D_{sI}(2860)$ is likely to be a $J^{P=3-}$ state

Should decay to D*K

Identifying $D_{sI}(2710)$ through its decay modes

P. Colangelo, S. Nicotri, M. Rizzi, FDF Phys. Rev. D77, 014012

$$R_1 = \frac{\Gamma(D_{sJ} \to D^*K)}{\Gamma(D_{sJ} \to DK)} \qquad R_2 = \frac{\Gamma(D_{sJ} \to D_s\eta)}{\Gamma(D_{sJ} \to DK)} \qquad R_3 = \frac{\Gamma(D_{sJ} \to D_s^*\eta)}{\Gamma(D_{sJ} \to DK)}$$

the dependence on the (unknown) couplings drops out

	$R_{1} \times 10^{2}$	$R_{2} \times 10^{2}$	$R_{3} \times 10^{2}$
$D_s^{*\prime}$	91 ± 4	20 ± 1	5 ± 2
D^*_{s1}	4.3 ± 0.2	16.3 ± 0.9	0.18 ± 0.07

The D^{*}K decay is the signal that must be investigated in order to distinguish the two possible assignments

BaBar Analysis of D^{*}K final states

BaBar Analysis of D^{*}K final states

F. De Fazio INFN Bari Hadron 2011

BaBar Analysis of D^{*}K final states

Branching fractions

$$\frac{B(D_{s1}(2710)^+ \to D^*K)}{B(D_{s1}(2710)^+ \to DK)} = 0.91 \pm 0.13_{stat} \pm 0.12_{syst}$$

Supports the identification of $D_{s1}(2710)$ with $2^{3}S_{1}$ (first radial excitation of D_{s}^{*})

$$\frac{B(D_{sJ}(2860)^+ \to D^*K)}{B(D_{sJ}(2860)^+ \to DK)} = 1.10 \pm 0.15_{stat} \pm 0.19_{syst}$$

Does not support or discard unambiguously any interpretation: still to be understood

$D_{sJ}(3040)$

The only additional information is that it decays	$\rightarrow D^*K$	YES
	$\rightarrow \mathrm{DK}$	NO

$$\int$$
 $J^{P=1^+, 2^-, 3^+,...}$

$D_{sI}(3040)$: how to discriminate among the four possibilities?

• info from Relativistic Quark Model (RQM)

• Allowed strong decays:

- to $D_{(s)}^{*}$ + light pseudoscalar meson

 $D^*K, D^*_s\eta$

$$\begin{split} M(\tilde{D}_{s1})^{(\text{RQM})} &= 3114 \text{ MeV}, \\ M(\tilde{D}_{s1}')^{(\text{RQM})} &= 3165 \text{ MeV}, \\ M(D_{s2})^{(\text{RQM})} &= 2953 \text{ MeV}, \\ M(D_{s2}^{*\prime})^{(\text{RQM})} &= 2900 \text{ MeV}. \end{split}$$

$$R_1 = \frac{\Gamma(D_{sJ}(3040) \rightarrow D_s^* \eta)}{\Gamma(D_{sJ}(3040) \rightarrow D^* K)}$$

- to members of higher doublets + a light pseudoscalar meson

 $D_{0}^{*}K, D_{s0}^{*}, D_{1}^{*}K$ $D_{1}K, D_{2}^{*}K$

- to $D_{(s)}$ + a light vector meson

 $\mathbf{DK}^{*}, \mathbf{D}_{s} \mathbf{\phi}$

 $D_{sI}(3040)$: how to discriminate among the four possibilities?

Decay modes	\tilde{D}'_{s1} $(n = 2, J^P_{s\ell} = 1^+_{1/2})$	\tilde{D}_{s1} $(n = 2, J_{s_{\ell}}^{P} = 1_{3/2}^{+})$	$D_{s2} \ (n = 1, \ J^P_{s\ell} = 2^{3/2})$	$D_{s2}^{*\prime}$ $(n = 1, J_{s_{\ell}}^{p} = 2_{5/2}^{-})$
$D^*K, D^*_s\eta$	s wave	d wave	p wave	f wave
R_1	0.34	0.20	0.245	0.143
$D_0^*K, D_{s0}^*\eta, D_1'K$	p wave	p wave	d wave	d wave
D_1K	p wave	p wave		d wave
D_2^*K	p wave	p wave	s wave	d wave
$DK^*, D_s\phi$	s wave	s wave	p wave	<i>p</i> wave
	$\Gamma \simeq 140 \text{ MeV}$	$\Gamma \simeq 20 \text{ MeV}$	Negligible	Negligible
		Spin p	bartner	
	\tilde{D}_{s0}^{*} $(n = 2, J_{s\ell}^{P} = 0_{1/2}^{+})$	\tilde{D}_{s2}^{*} $(n = 2, J_{s\ell}^{P} = 2_{3/2}^{+})$	D_{s1}^* $(n = 1, J_{s\ell}^p = 1_{3/2}^-)$	D_{s3} $(n = 1, J_{s\ell}^{P} = 3^{-}_{5/2})$
$DK, D_s \eta$	s wave	d wave	p wave	f wave
$D^*K, D^*_s\eta$		d wave	p wave	f wave
$D_0^*K, D_{s0}^*\eta$			d wave	
$D_1^{\prime}K$	p wave	p wave	d wave	d wave
$D_1 K$	p wave	p wave	s wave	d wave
D_2^*K		p wave		d wave

• \widetilde{D}'_{s1} decays in s-wave to D^{*}K, D^{*}_s η (broader), has the largest R₁, the largest width to light vector mesons

P. Colangelo , FDF PRD81, 094001

 $D_{sI}(3040)$: how to discriminate among the four possibilities?

Decay modes	\tilde{D}'_{s1} $(n = 2, J^p_{s_\ell} = 1^+_{1/2})$	\tilde{D}_{s1} $(n = 2, J^p_{s_\ell} = 1^+_{3/2})$	$D_{s2} \ (n=1, \ J_{s_{\ell}}^{p}=2^{-}_{3/2})$	$D_{s2}^{*\prime}$ $(n = 1, J_{s_{\ell}}^{p} = 2_{5/2}^{-})$
$D^*K, D^*_s\eta$	s wave	d wave	p wave	f wave
R_1	0.34	0.20	0.245	0.143
$D_0^*K, D_{s0}^*\eta, D_1'K$	p wave	p wave	d wave	d wave
D_1K	p wave	p wave		d wave
D_2^*K	p wave	p wave	s wave	d wave
$DK^*, D_s\phi$	s wave	s wave	<i>p</i> wave	p wave
	$\Gamma \simeq 140 \text{ MeV}$	$\Gamma \simeq 20 \text{ MeV}$	Negligible	Negligible
		Spin p	bartner	
	\tilde{D}_{s0}^{*} $(n = 2, J_{s\ell}^{P} = 0_{1/2}^{+})$	\tilde{D}_{s2}^{*} $(n = 2, J_{s\ell}^{P} = 2_{3/2}^{+})^{-1}$	D_{s1}^* $(n = 1, J_{s_\ell}^P = 1_{3/2}^-)$	D_{s3} $(n = 1, J_{s\ell}^p = 3^{-}_{5/2})$
$DK, D_s \eta$	s wave	d wave	p wave	f wave
$D^*K, D^*_s\eta$		d wave	p wave	f wave
$D_0^*K, D_{s0}^*\eta$			d wave	
$D_1^{\prime}K$	p wave	p wave	d wave	d wave
D_1K	p wave	p wave	s wave	d wave
D_2^*K		p wave		d wave

- \widetilde{D}'_{s1} decays in s-wave to D^*K , $D_s^* \eta$ (broader), has the largest R_1 , the largest width to light vector mesons
- the two 2⁻ states should not be observed in the decay to light vector mesons

 $D_{sI}(3040)$: how to discriminate among the four possibilities?

Decay modes	\tilde{D}'_{s1} $(n = 2, J^P_{s\ell} = 1^+_{1/2})$	\tilde{D}_{s1} $(n = 2, J_{s_{\ell}}^{P} = 1_{3/2}^{+})$	$D_{s2} \ (n = 1, \ J^P_{s\ell} = 2^{3/2})$	$D_{s2}^{*\prime}$ $(n = 1, J_{s_{\ell}}^{P} = 2_{5/2}^{-})$
$D^*K, D^*_s\eta$	s wave	d wave	p wave	f wave
R_1	0.34	0.20	0.245	0.143
$D_0^*K, D_{s0}^*\eta, D_1'K$	p wave	p wave	d wave	d wave
D_1K	p wave	p wave		d wave
D_2^*K	p wave	p wave	s wave	d wave
$DK^*, D_s\phi$	s wave	s wave	p wave	p wave
	$\Gamma \simeq 140 \text{ MeV}$	$\Gamma \simeq 20 \text{ MeV}$	Negligible	Negligible
		Spin p	bartner	
	\tilde{D}_{s0}^* $(n = 2, J_{s_{\ell}}^P = 0_{1/2}^+)$	\tilde{D}_{s2}^{*} $(n = 2, J_{s\ell}^{P} = 2_{3/2}^{+})^{-1}$	D_{s1}^* $(n = 1, J_{s_{\ell}}^P = 1_{3/2}^-)$	D_{s3} $(n = 1, J_{s_{\ell}}^{p} = 3_{5/2}^{-})$
$DK, D_s \eta$	s wave	d wave	p wave	f wave
$D^*K, D^*_s\eta$		d wave	p wave	f wave
$D_0^*K, D_{s0}^*\eta$			d wave	
$D_1'K$	p wave	p wave	d wave	d wave
D_1K	p wave	p wave	s wave	d wave
D_2^*K		p wave		d wave

- \widetilde{D}'_{s1} decays in s-wave to D^*K , $D_s^* \eta$ (broader), has the largest R_1 , the largest width to light vector mesons
- the two 2⁻ states should not be observed in the decay to light vector mesons
- D_{s2} cannot decay to D_1K but should have the largest width to D_2^*K

 $D_{sI}(3040)$: how to discriminate among the four possibilities?

Decay modes	\tilde{D}'_{s1} $(n = 2, J^P_{s\ell} = 1^+_{1/2})$	\tilde{D}_{s1} $(n = 2, J_{s_{\ell}}^{P} = 1_{3/2}^{+})$	$D_{s2} \ (n = 1, \ J_{s_{\ell}}^{p} = 2_{3/2}^{-})$	$D_{s2}^{*\prime}$ $(n = 1, J_{s_{\ell}}^{P} = 2_{5/2}^{-})$
$D^*K, D^*_s\eta$	s wave	d wave	p wave	f wave
R_1	0.34	0.20	0.245	0.143
$D_0^*K, D_{s0}^*\eta, D_1'K$	p wave	p wave	d wave	d wave
D_1K	p wave	p wave		d wave
D_2^*K	p wave	p wave	s wave	d wave
$DK^*, D_s\phi$	s wave	s wave	<i>p</i> wave	p wave
	$\Gamma \simeq 140 \text{ MeV}$	$\Gamma \simeq 20 \text{ MeV}$	Negligible	Negligible
		Spin p	bartner	
	\tilde{D}_{s0}^* $(n = 2, J_{s_{\ell}}^P = 0_{1/2}^+)$	\tilde{D}_{s2}^{*} $(n = 2, J_{s\ell}^{P} = 2_{3/2}^{+})$	D_{s1}^* $(n = 1, J_{s_{\ell}}^P = 1_{3/2}^-)$	D_{s3} (n = 1, $J_{s\ell}^{P} = 3^{-}_{5/2}$)
$DK, D_s \eta$	s wave	d wave	p wave	f wave
$D^*K, D^*_s\eta$		d wave	p wave	f wave
$D_0^*K, D_{s0}^*\eta$			d wave	
$D_1'K$	p wave	p wave	d wave	d wave
D_1K	p wave	p wave	s wave	d wave
D_2^*K		p wave		d wave

- \widetilde{D}'_{s1} decays in s-wave to D^*K , $D_s^* \eta$ (broader), has the largest R_1 , the largest width to light vector mesons
- the two 2⁻ states should not be observed in the decay to light vector mesons
- D_{s2} cannot decay to D_1K but should have the largest width to D_2^*K
- look at the features of the spin partner

 $D_{sI}(3040)$: how to discriminate among the four possibilities?

Decay modes	\tilde{D}'_{s1} $(n = 2, J^P_{s\ell} = 1^+_{1/2})$	\tilde{D}_{s1} $(n = 2, J_{s_{\ell}}^{P} = 1_{3/2}^{+})$	$D_{s2} \ (n = 1, \ J^P_{s\ell} = 2^{3/2})$	$D_{s2}^{*\prime}$ $(n = 1, J_{s_{\ell}}^{P} = 2_{5/2}^{-})$
$D^*K, D^*_s\eta$	s wave	d wave	p wave	f wave
R_1	0.34	0.20	0.245	0.143
$D_0^*K, D_{s0}^*\eta, D_1'K$	p wave	p wave	d wave	d wave
D_1K	p wave	p wave		d wave
D_2^*K	p wave	p wave	s wave	d wave
$DK^*, D_s\phi$	s wave	s wave	<i>p</i> wave	p wave
	$\Gamma \simeq 140 \text{ MeV}$	$\Gamma \simeq 20 \text{ MeV}$	Negligible	Negligible
		Spin p	bartner	
	\tilde{D}_{s0}^{*} $(n = 2, J_{s_{\ell}}^{P} = 0_{1/2}^{+})$	\tilde{D}_{s2}^{*} $(n = 2, J_{s\ell}^{P} = 2_{3/2}^{+})$	D_{s1}^* $(n = 1, J_{s_{\ell}}^p = 1_{3/2}^-)$	D_{s3} $(n = 1, J_{s\ell}^p = 3^{5/2})$
$DK, D_s \eta$	s wave	d wave	p wave	f wave
$D^*K, D^*_s\eta$		d wave	p wave	f wave
$D_0^*K, D_{s0}^*\eta$			d wave	
$D_1'K$	p wave	p wave	d wave	d wave
$D_1 K$	p wave	p wave	s wave	d wave
D_2^*K		p wave		d wave

- \widetilde{D}'_{s1} decays in s-wave to D^*K , $D_s^* \eta$ (broader), has the largest R_1 , the largest width to light vector mesons
- the two 2⁻ states should not be observed in the decay to light vector mesons
- D_{s2} cannot decay to D_1K but should have the largest width to D_2^*K
- look at the features of the spin partner

F. De Fazio INFN Bari Hadron 2011

Hidden charm (conventional) states

F. De Fazio INFN Bari Hadron 2011

Hidden charm states (?)

State	m (MeV)	Г (MeV)	J^{PC}	Process (mode)	Experiment $(\#\sigma)$	Year	Status	
X (3872)	3871.52 ± 0.20	1.3 ± 0.6 (<2.2)	1++/2-+	$B \to K(\pi^+\pi^- J/\psi)$ $p\bar{p} \to (\pi^+\pi^- J/\psi) + \cdots$	Belle [85, 86] (12.8), <i>BABA</i> R [87] (8.6) CDF [88–90] (np), DØ [91] (5.2)	2003	OK	
				$\begin{split} B &\to K(\omega J/\psi) \\ B &\to K(D^{*0}\bar{D^0}) \\ B &\to K(\gamma J/\psi) \\ B &\to K(\gamma \psi(2S)) \end{split}$	Belle [92] (4.3), <i>BABAR</i> [93] (4.0) Belle [94, 95] (6.4), <i>BABAR</i> [96] (4.9) Belle [92] (4.0), <i>BABAR</i> [97, 98] (3.6) <i>BABAR</i> [98] (3.5), Belle [99] (0.4)		From N. EPJ C71	B rambilla et al. (11) 1534
X (3915)	3915.6 ± 3.1	28 ± 10	0/2?+	$B \to K(\omega J/\psi)$	Belle [100] (8.1), BABAR [101] (19)	2004	ок	
X (3940)	3942^{+9}_{-8}	37^{+27}_{-17}	??+	$e^+e^- \to e^+e^-(\omega J/\psi)$ $e^+e^- \to J/\psi(D\bar{D}^*)$ $e^+e^- \to J/\psi(\ldots)$	Belle [102] (7.7) Belle [103] (6.0) Belle [54] (5.0)	2007	NC!	
G(3900)	3943 ± 21	52 ± 11	1	$e^+e^-\to\gamma(D\bar{D})$	BABAR [27] (np), Belle [21] (np)	2007	OK	
Y(4008)	4008^{+121}_{-49}	226 ± 97	1	$e^+e^- \to \gamma (\pi^+\pi^-J/\psi)$	Belle [104] (7.4)	2007	NC!	
$Z_1(4050)^+$	4051_{-43}^{+24}	82^{+51}_{-55}	?	$B\to K(\pi^+\chi_{c1}(1P))$	Belle [105] (5.0)	2008	NC!	
Y(4140)	4143.4 ± 3.0	15^{+11}_{-7}	??+	$B \to K(\phi J/\psi)$	CDF [106, 107] (5.0)	2009	NC!	
X(4160)	4156_{-25}^{+29}	139^{+113}_{-65}	??+	$e^+e^- \to J/\psi(D\bar{D}^*)$	Belle [103] (5.5)	2007	NC!	
$Z_2(4250)^+$	4248^{+185}_{-45}	177^{+321}_{-72}	?	$B \to K(\pi^+\chi_{c1}(1P))$	Belle [105] (5.0)	2008	NC!	
Y(4260)	4263 ± 5	108 ± 14	1	$e^+e^- \to \gamma (\pi^+\pi^- J/\psi)$	BABAR [108, 109] (8.0) CLEO [110] (5.4) Belle [104] (15)	2005	ОК	
				$e^+e^- \to (\pi^+\pi^-J/\psi)$	CLEO [111] (11)			
				$e^+e^- \to (\pi^0\pi^0J/\psi)$	CLEO [111] (5.1)			
Y(4274)	$4274.4_{-6.7}^{+8.4}$	32^{+22}_{-15}	??+	$B \to K(\phi J/\psi)$	CDF [107] (3.1)	2010	NC!	
X(4350)	$4350.6^{+4.6}_{-5.1}$	$13.3^{+18.4}_{-10.0}$	0,2++	$e^+e^- \to e^+e^-(\phi J/\psi)$	Belle [112] (3.2)	2009	NC!	
Y(4360)	4353 ± 11	96 ± 42	1	$e^+e^- \to \gamma(\pi^+\pi^-\psi(2S))$	BABAR [113] (np), Belle [114] (8.0)	2007	OK	
$Z(4430)^+$	4443_{-18}^{+24}	107^{+113}_{-71}	?	$B\to K(\pi^+\psi(2S))$	Belle [115, 116] (6.4)	2007	NC!	
X(4630)	4634^{+9}_{-11}	92^{+41}_{-32}	1	$e^+e^- \to \gamma(\Lambda_c^+\Lambda_c^-)$	Belle [25] (8.2)	2007	NC!	
Y(4660)	4664 ± 12	48 ± 15	1	$e^+e^- \to \gamma(\pi^+\pi^-\psi(2S))$	Belle [114] (5.8)	2007	NC!	48

Hidden beauty states

very recently discovered puzzling states: $Z_b(10610) \& Z_b(10650)$ decaying to $\Upsilon(nS) \pi^{\pm}$ (n=1,2,3) and $h_b(mP) \pi^{\pm}$ (m=1,2) in $\Upsilon(5S)$ decays in association with a single charged pion favoured quantum numbers I=1, $J^P=1^+$

decays to Υ and $\mathbf{h}_{\mathbf{b}}$ occur with comparable rates \rightarrow no spin-flip suppression

Exotic interpretations

Molecular state:

loosely bound state of a pair of mesons.The dominant binding mechanismshould be pion exchange.Being weakly bound, mesons tend to decayas if they were free

Tetraquark:

Bound state of four quarks (diquark-antidiquark) quarks grouped into colour triplet scalar or vector clusters. Strong decays via rearrangement processes

Distinctive features of multiquark picture with respect to charmonium:

- prediction of many new states
- possible existence of states with non-zero charge, strangeness or both

Charmonium hybrids

States with an excited gluonic degree of freedom 0+-, 1-+, 2+-...quantum numbers are not possible for \overline{cc} states but are possible for hybrids \rightarrow would unambiguously signal an exotic state Lattice predictions for the lowest lying hybrid: M^I 4.2 GeV

Threshold effects

Virtual enhancement of cross section that may not indicate a resonance.

X(3872): discovery and properties

Observed in 2003 by four experiments in two production channels:

• mass very close to $\overline{D}{}^{0}D^{*0}$ threshold: M(X(3872)) - (M_{D0}+M_{D*0}) = -0.32 ± 0.35 GeV

- very small width: **Γ < 2.3 GeV** @ 90% c.l.
- $X \rightarrow J/\psi \pi \pi$ consistent with originating from $X \rightarrow J/\psi \rho \rightarrow C=+1$
- from angular distributions in $X \rightarrow J/\psi \pi \pi$ (CDF) $\rightarrow J^{PC}= 1^{++} (\chi_{c1}^{*})$ or $J^{PC}= 2^{-+} (\eta_{c2})$
- search for charged partners produced no result \rightarrow **I=0**

X(3872): decays to two or three pions

Two and three pion modes were found with:

$$\frac{B(X \to J/\psi \pi^+ \pi^- \pi^0)}{B(X \to J/\psi \pi^+ \pi^-)} = 1.0 \pm 0.4 \pm 0.3 \qquad \text{Isospin violation}$$

Possible explanation:

ph

Suzuki, PRD 72, 114013

phase space severely suppressed

$$\frac{B(X \to J/\psi\pi^{+}\pi^{-}\pi^{0})}{B(X \to J/\psi\pi^{+}\pi^{-})} = 1.0 \pm 0.4 \pm 0.3 \implies \frac{A(X \to J/\psi\rho)}{A(X \to J/\psi\omega)} \cong 0.2$$

ace space not very suppressed

BaBar studies the $\pi\pi\pi$ distribution in $X \rightarrow J/\psi \omega$ which seeems too favour a p-wave decay

X(3872): radiative decays to $J/\psi \gamma$ and $\psi(2S) \gamma$

May help in distinguishing the different possibilities

Barnes et al, PRD 72, 054026 Swanson, PLB 598, 197

• if $X = \chi'_{c1} \rightarrow X \rightarrow \psi(2S) \gamma$ should have a rate larger than $X \rightarrow J/\psi \gamma$

• if X= η_{c2} or X=composite object \rightarrow X $\rightarrow \psi(2S) \gamma$ is suppressed with respect to X $\rightarrow J/\psi \gamma$

BaBar gives:

$$\frac{\Gamma(X(3872) \rightarrow \psi(2S) \gamma)}{\Gamma(X(3872) \rightarrow J/\psi \gamma)} = 3.4 \pm 1.4$$

while **Belle**:

$$\frac{\Gamma(X(3872) \rightarrow \psi(2S) \gamma)}{\Gamma(X(3872) \rightarrow J/\psi \gamma)} < 2.0$$

X(3872): molecule vs charmonium

X proximity to DD^* threshold may suggest that a molecular state made of charmed mesons contributes to the structure of X

Swanson, Brateen, Voloshin

Mixing of the molecule (dominant component) with other states such as pure charmonium _____ no definite isospin

radiative decays

In the molecular scenario $X \to D^0 \overline{D}{}^0 \gamma$ & $X \to D^+ D^- \gamma$ Voloshin arise from the radiative decays of the individual vector mesons

 $D^{*0} \to D^0 \gamma, \ \overline{D}^{*0} \to \overline{D}^0 \gamma \quad \& \quad D^{*\pm} \to D^{\pm} \gamma$ and the decay $X \to D^+ D^- \gamma$ is strongly suppressed with respect to $X \to D^0 \overline{D}^0 \gamma$

If observed, the suppression of $X \to D^+ D^- \gamma$ with respect to $X \to D^0 \overline{D}{}^0 \gamma$ would support the molecular interpretation?

X(3872) as the first radial excitation of χ_{c1} : radiative decays

P. Colangelo, S. Nicotri, FDF PLB 650, 16611

Can be evaluated as a function of the ratio of the two unknown couplings

X(3872) as the first radial excitation of χ_{c1} : hadronic decays

Values of \hat{g}_1 typical of hadronic couplings can reproduce the small width of X(3872)

Heavy quark mass limit for heavy quarkonium states

$P = (-1)^{L+1}$
$C = (-1)^{L+s}$

 $L=0 \leftrightarrow S$ - wave states $L=1 \leftrightarrow P$ - wave states $L=2 \leftrightarrow D$ - wave states

HQ spin simmetry YESHQ flavour symmetry NO

....

Multiplets for heavy quarkonium states

Effective Lagrangian for radiative transitions of heavy quarkonia

F. De Fazio, PRD 79, 054015

$1P \rightarrow 1S$ transitions

Exploting known data:

$$\begin{array}{l} \mathcal{B}(\chi_{c0}(1P) \to J/\psi \,\gamma) \ = \ (1.28 \pm 0.11) \times 10^{-2} \\ \mathcal{B}(\chi_{c1}(1P) \to J/\psi \,\gamma) \ = \ (36.0 \pm 1.9) \times 10^{-2} \\ \mathcal{B}(\chi_{c2}(1P) \to J/\psi \,\gamma) \ = \ (20.0 \pm 1.0) \times 10^{-2} \end{array} \right\} \xrightarrow{\begin{subarray}{l} \delta_c^{1P1S} \ = \ 0.227 \pm 0.013 \ \mathrm{GeV^{-1}} \\ \delta_c^{1P1S} \ = \ 0.241 \pm 0.009 \ \mathrm{GeV^{-1}} \\ \delta_c^{1P1S} \ = \ 0.233 \pm 0.010 \ \mathrm{GeV^{-1}} \end{array}$$

+ total widths of χ_{cJ} states

spin symmetry turns out to be experimentally well satisfied

averaged result:

$$\delta_c^{1P1S} = 0.235 \pm 0.006 \,\,\mathrm{GeV}^{-1}$$

can be used to predict:

$$\Gamma(h_c(1P) \to \eta_c(1P) \gamma) = 634 \pm 32 \,\mathrm{KeV}$$

$2S \rightarrow 1P$ transitions

possibility to exploit data in the beauty sector:

$$\begin{aligned}
\mathcal{B}(\chi_{b0}(2P) \to \Upsilon(1S) \gamma) &= (9 \pm 6) \times 10^{-3} \\
\mathcal{B}(\chi_{b0}(2P) \to \Upsilon(2S) \gamma) &= (4.6 \pm 2.1) \times 10^{-2} \\
\mathcal{B}(\chi_{b1}(2P) \to \Upsilon(1S) \gamma) &= (8.5 \pm 1.3) \times 10^{-2} \\
\mathcal{B}(\chi_{b1}(2P) \to \Upsilon(2S) \gamma) &= (21 \pm 4) \times 10^{-2} \\
\mathcal{B}(\chi_{b2}(2P) \to \Upsilon(1S) \gamma) &= (7.1 \pm 1.0) \times 10^{-2} \\
\mathcal{B}(\chi_{b2}(2P) \to \Upsilon(2S) \gamma) &= (16.2 \pm 2.4) \times 10^{-2}
\end{aligned}$$

define width ratio

and coupling ratio

$$R_J^{(b)} = \frac{\Gamma(\chi_{bJ}(2P) \to \Upsilon(2S) \gamma)}{\Gamma(\chi_{bJ}(2P) \to \Upsilon(1S) \gamma)}$$

$$R_{\delta}^{(b)} = \frac{\delta_b^{2P1S}}{\delta_b^{2P2S}}$$

$$R_{\delta}^{(b)} = 8.8 \pm 0.7$$

even though the coupling might be different passing from beauty to charm, it is reasonable to assume that the ratios of the couplings stay stable

we can predict analogous charm ratios $R_{I}^{(c)}$

$2S \rightarrow 1P$ transitions

prediction for **J**=1:

$$R_1^{(c)} = \frac{\Gamma(\chi_{c1}(2P) \to \psi(2S) \gamma)}{\Gamma(\chi_{c1}(2P) \to \psi(1S) \gamma)} = 1.64 \pm 0.25$$

Identifing X(3872) with $\chi_{c1}(2P)$ and using the data:

$$\mathcal{B}(B^+ \to XK^+, X \to J/\psi \gamma) = (2.8 \pm 0.8 \pm 0.2) \times 10^{-6} \mathcal{B}(B^+ \to XK^+, X \to \psi(2S) \gamma) = (9.9 \pm 2.9 \pm 0.6) \times 10^{-6}$$

$$R_X = \frac{\Gamma(X(3872) \to \psi(2S) \,\gamma)}{\Gamma(X(3872) \to \psi(1S) \,\gamma)} = 3.5 \pm 1.4$$

 $R_1^{(c)}$ and R_X are close enough to consider the assumption $X(3872) = \chi_{c1}(2P)$ plausible to be contrasted with composite scenarios in which $X(3872) \rightarrow \psi(2S)\gamma$ is suppressed with respect to $X(3872) \rightarrow \psi(1S)\gamma$

Concluding remarks

- open charm mesons:
- all the observed cs states classified as ordinary mesons
- the most intriguing challenge remains to understand why $D_{s0}^{*}(2317)$ and $D_{s1}^{'}(2460)$ have masses below the $D^{(*)}K$ threshold

- HQ symmetry predicts analogous states in the beauty system :

 $\begin{array}{ll} \mathbf{M}(\mathbf{B}^*_{s0}) = 5721 & \text{MeV decaying to } \mathbf{B}_s \ \pi^0 & \text{P. Colangelo et al.} \\ \mathbf{M}(\mathbf{B}^*_{s1}) = 5762 & \text{MeV decaying to } \mathbf{B}^*_{s} \ \pi^0 & \text{MPLA 19, 2083} \end{array}$

- quarkonium like states:
- X(3872) still puzzling state
- identification with χ'_{c1} plausible (according to my analysis of radiative decays)
- Many other states not discussed Strongly required independent confirmation of charged quarkonium-like states (at present only Belle has evidence) De Fazio INFN Bari Hadron 2011