The 3-D momentum structure of the nucleon

$$
\begin{aligned}
& \text { what would we like to know? } \\
& \text { what do we know and how? }
\end{aligned}
$$

XIV International Conference on Hadron Spectroscopy HADRON 2011 - Munich, June 13-17, 2011

Mauro Anselmino, Torino University \& INFN

Exploring the 3-dimensional phase-space structure of the nucleon

phase-space ($k-b$) distribution of partons in nucleons; parton intrinsic motion: spin- k_{\perp} correlations? orbiting quarks?
information encoded in GPDs and TMDs
(exclusive and inclusive processes)
new probes and concepts to explore the nucleon structure

TMDs - Transverse Momentum Dependent (distribution and fragmentation functions)
(polarized) SIDIS and Drell-Yan, spin asymmetries in inclusive (large P_{T}) NN processes

GPDs - Generalized Partonic Distributions

exclusive processes in leptonic and hadronic interactions

$$
q\left(x, \boldsymbol{b}_{T}\right)=\int \frac{d^{2} \boldsymbol{\Delta}_{T}}{(2 \pi)^{2}} H_{q}\left(x, 0,-\boldsymbol{\Delta}_{T}^{2}\right) e^{-i \boldsymbol{b}_{T} \cdot \boldsymbol{\Delta}_{T}}
$$

GTMDs - Generalized Transverse Momentum Dependent (partonic distributions) exclusive processes in leptonic and hadronic interactions

$$
\int d^{2} \boldsymbol{k}_{\perp} H(\boldsymbol{k}, \boldsymbol{\Delta})=H\left(x, \xi, \boldsymbol{\Delta}_{T}\right)
$$

phase-space parton distribution, $W(\boldsymbol{k}, \boldsymbol{b})$

(S. Meissner, Metz, Schlegel)

TGPD or GPCF

Wigner
function
(Belitsky, Ji, Yuan)

TMDs in SIDIS

TMD factorization holds at large Q^{2}, and $P_{T} \approx k_{\perp} \approx \Lambda_{\mathrm{QCD}}$
Two scales: $P_{T} \ll Q^{2}$

$$
\boldsymbol{p}_{\perp} \simeq \boldsymbol{P}_{T}-z_{h} \boldsymbol{k}_{\perp}
$$

(Collins, Soper, Ji, J.P. Ma, Yuan, Qiu, Vogelsang, Collins, Metz)

TMDs: the leading-twist correlator, with intrinsic k_{\perp}, contains 8 independent functions

$$
\begin{aligned}
& \Phi\left(x, \boldsymbol{k}_{\perp}\right)\left.=\frac{1}{2}\left[\left(f_{1}\right) h_{+}+f_{1 T}^{\perp}\right) \frac{\epsilon_{\mu \nu \rho \sigma} \gamma^{\mu} n_{+}^{\nu} k_{\perp}^{\rho} S_{T}^{\sigma}}{M}+\left(S_{L} \Omega\right)+\frac{\boldsymbol{k}_{\perp} \cdot \boldsymbol{S}_{T}}{M}\left(g_{1 T}^{\perp}\right)\right) \gamma^{5} h_{+} \\
&\left.+h_{h_{1 T}} i \sigma_{\mu \nu} \gamma^{5} n_{+}^{\mu} S_{T}^{\nu}+\left(S_{L} h_{1 L}^{\perp}\right)+\frac{\boldsymbol{k}_{\perp} \cdot k_{\perp}^{\mu} n_{+}^{\nu}}{M}\right] \\
&\left.h_{1 T}^{\perp}\right) \frac{i \sigma_{\mu \nu} \gamma^{5} n_{+}^{\mu} k_{\perp}^{\nu}}{M} \\
& P, S
\end{aligned}
$$

with partonic interpretation

$$
f_{1}^{q}\left(x, k_{\perp}^{2}\right)
$$

$$
q(x)=f_{1}^{q}(x)=\int \mathrm{d}^{2} \boldsymbol{k}_{\perp} f_{1}^{q}\left(x, k_{\perp}^{2}\right)
$$

several spin- \mathbf{k}_{\perp} correlations in TMDs

$$
\boldsymbol{S} \cdot\left(\boldsymbol{p} \times \boldsymbol{k}_{\perp}\right) \quad \boldsymbol{s}_{q} \cdot\left(\boldsymbol{p} \times \boldsymbol{k}_{\perp}\right) \quad(\boldsymbol{p} \cdot \boldsymbol{S})\left(\boldsymbol{p} \cdot \boldsymbol{s}_{q}\right) \quad \cdots
$$

"Sivers effect" "Boer-Mulders effect"

The nucleon at twist-2

similar spin- p_{\perp} correlations in fragmentation process (case of final spinless hadron)

$$
D_{1}^{q}\left(x, \boldsymbol{p}_{\perp}^{2}\right)
$$

$$
H_{1}^{\perp q}\left(x, \boldsymbol{p}_{\perp}^{2}\right)
$$

$\boldsymbol{s}_{q} \cdot\left(\boldsymbol{p}_{q} \times \boldsymbol{p}_{\perp}\right) \quad$ "Collins effect"

$$
\begin{aligned}
\frac{\mathrm{d} \sigma}{\mathrm{~d} \phi} & \left.=F_{U U}+\cos (2 \phi) F_{U U}^{\cos (2 \phi)}+\frac{1}{Q} \cos \phi F_{U U}^{\cos \phi}\right)+\lambda \frac{1}{Q} \sin \phi F_{L U}^{\sin \phi} \\
& +S_{L}\left\{\sin (2 \phi) F_{U L}^{\sin (2 \phi)}+\frac{1}{Q} \sin \phi F_{U L}^{\sin \phi}+\lambda\left[F_{L L}+\frac{1}{Q} \cos \phi F_{L L}^{\cos \phi}\right]\right\} \\
& +S_{T}\left\{\operatorname { s i n } (\phi - \phi _ { S }) \left(F_{U T}^{\sin \left(\phi-\phi_{S}\right)}+\sin \left(\phi+\phi_{S}\right) F_{U T}^{\sin \left(\phi+\phi_{S}\right)}+\sin \left(3 \phi-\phi_{S}\right) F_{U T}^{\sin \left(3 \phi-\phi_{S}\right)}\right.\right. \\
& +\frac{1}{Q}\left[\sin \left(2 \phi-\phi_{S}\right) F_{U T}^{\sin \left(2 \phi-\phi_{S}\right)}+\sin \phi_{S} F_{U T}^{\sin \phi_{S}}\right] \\
& \left.+\lambda\left[\cos \left(\phi-\phi_{S}\right) F_{L T}^{\cos \left(\phi-\phi_{S}\right)}+\frac{1}{Q}\left(\cos \phi_{S} F_{L T}^{\cos \phi_{S}}+\cos \left(2 \phi-\phi_{S}\right) F_{L T}^{\cos \left(2 \phi-\phi_{S}\right)}\right)\right]\right\}
\end{aligned}
$$

Kotzinian, NP B441 (1995) 234 Mulders and Tangermann, NP B461 (1996) 197 Boer and Mulders, PR D57 (1998) 5780 Bacchetta et al., PL B595 (2004) 309 Bacchetta et al., JHEP 0702 (2007) 093 Anselmino et al., arXiv:1101.1011 [hep-ph]
many spin asymmetries $\mathrm{d} \sigma(\boldsymbol{S}) \neq \mathrm{d} \sigma(-\boldsymbol{S})$

$F_{S_{B} S_{T}}^{(\ldots .)}$ contain the TMDs

$$
\begin{aligned}
& \text { hadron plane } x,-a x i s
\end{aligned}
$$

$$
\begin{aligned}
& f \otimes D \sim \int d^{2} \boldsymbol{k}_{\perp} d^{2} \boldsymbol{p}_{\perp} \delta^{(2)}\left(\boldsymbol{P}_{T}-z_{h} \boldsymbol{k}_{\perp}-\boldsymbol{p}_{\perp}\right) w\left(\boldsymbol{k}_{\perp}, \boldsymbol{P}_{T}\right) f\left(x_{B}, k_{\perp}\right) D\left(z_{h}, p_{\perp}\right)
\end{aligned}
$$

TMDs in unpolarized SIDIS: "Cahn effect" at $\mathcal{O}\left(k_{\perp} / Q\right)$

$$
\frac{1}{Q} \cos \phi F_{U U}^{\cos \phi} \sim \underbrace{f_{1}^{q} \otimes D_{1}^{q} \otimes \mathrm{~d} \hat{\sigma}}+\left(h_{1}^{q \perp} \otimes H_{1}^{q \perp} \otimes \mathrm{~d} \Delta \hat{\sigma}\right)
$$

$$
d \hat{\sigma}^{\ell q-\ell q} \propto \hat{s}^{2}+\hat{u}^{2}=\frac{Q^{4}}{y^{2}}\left[1+(1-y)^{2} \bigodot 4 \frac{k_{\perp}}{Q}(2-y) \sqrt{1-y} \cos \varphi\right]
$$

assuming gaussian k_{\perp} and p_{\perp} dependences:

$$
\left\langle k_{\perp}^{2}\right\rangle=0.28(\mathrm{GeV})^{2} \quad\left\langle p_{\perp}^{2}\right\rangle=0.25(\mathrm{GeV})^{2}
$$

M.A., M. Boglione, U. D'Alesio, A. Kotzinian, F. Murgia and A. Prokudin

Siver function phenomenology in SIDIS

M.Anselmino, M.Boglione, J.C.Collins, U.D'Alesio, A.V.Efremov, K.Goeke, A.Kotzinian, S.Menzel, A.Metz, F.Murgia, A.Prokudin, P.Schweitzer, W.Vogelsang, F.Yuan
$2\left\langle\sin \left(\phi-\phi_{S}\right)\right\rangle=A_{U T}^{\sin \left(\phi-\phi_{S}\right)} \equiv 2 \frac{\int \mathrm{~d} \overbrace{\phi \mathrm{~d} \phi_{S}\left(\mathrm{~d} \sigma^{\uparrow}-\mathrm{d} \sigma^{\downarrow}\right) \sin \left(\phi-\phi_{S}\right)}^{F_{U T}^{\sin \left(\phi-\phi_{S}\right)}}}{\int \mathrm{d} \phi \mathrm{d} \phi_{S}\left(\mathrm{~d} \sigma^{\uparrow}+\mathrm{d} \sigma^{\downarrow}\right)}$
extraction of Sivers function based on very simple parameterization, with \times and k_{\perp} factorization. Typically:
$\Delta^{N} f_{q / p^{\uparrow}}\left(x, k_{\perp}\right)=-\frac{2 k_{\perp}}{M} f_{1 T}^{\perp q}\left(x, k_{\perp}\right)=N x^{\alpha}(1-x)^{\beta} h\left(k_{\perp}\right) f_{q / p}\left(x, k_{\perp}\right)$ with

$$
f_{q / p}\left(x, k_{\perp}\right)=f_{q}(x) \frac{1}{\pi\left\langle k_{\perp}^{2}\right\rangle} e^{-k_{\perp}^{2} /\left\langle k_{\perp}^{2}\right\rangle} \quad \begin{aligned}
& \left\langle k_{\perp}^{2}\right\rangle \text { constant and } \\
& \text { flavour independent }
\end{aligned}
$$

S. Melis, talk at DIS 2011

FITu\&d only

HERMES Proton

S. Melis, talk at DIS 2011

FIT u \& d only

COMPASS Proton

simple Sivers functions for u and d quarks are sufficient

 to fit the available SIDIS data large and very small x dependence not constrained by data

new and previous

 extraction of u and d Sivers functionsS. Melis and A. Prokudin, preliminary results

Anselmino et al.
Eur. Phys. J. A39, 89 (2009)

Quark models for Sivers function

Brodsky, Hwang, Schmidt; Bacchetta, Conti, Radici; Bacchetta, Radici, Conti, Guagnelli; Brodsky, Pasquini, Xiao, Yuan; Pasquini, Yuan; Hwang;

(a)

(b) in all models one has:

$$
\left[f_{1 T}^{q \perp}\right]_{\mathrm{SIDIS}}=-\left[f_{1 T}^{q \perp}\right]_{\mathrm{DY}}
$$

the azimuthal dependence induced by intrinsic motion in unpolarized SIDIS (Cahn effect) has been confirmed (EMC, HERMES, COMPASS, CLAS)

Gaussian k_{\perp} distribution of TMDs?

$$
\left\langle k_{\perp}^{2}\right\rangle\left(x, Q^{2}\right) \quad\left\langle p_{\perp}^{2}\right\rangle\left(z, Q^{2}\right)
$$

x, z dependence? flavour dependence? energy dependence?
Sivers effect now observed by two experiments (+ HALL-A Aut on neutrons), but needs further measurements (wider kinematical coverage)
Q^{2} of data not so high, role of higher twists? more sophisticated parameterization... (non) universality of Sivers function?
recent improvement in study of QCD evolution (Aybat, Rogers, arXiv:1101.5057)

Collins effect in SIDIS - $F_{U T}^{\sin \left(\phi+\phi_{S}\right)}$

$$
\begin{gathered}
D_{h / q, \boldsymbol{s}_{q}}\left(z, \boldsymbol{p}_{\perp}\right)=D_{h / p}\left(z, p_{\perp}\right)+ \\
\mathrm{d} \sigma^{\uparrow}-\mathrm{d} \sigma^{\downarrow}=\sum_{q} h_{\left.h_{1 q}\left(x, k_{\perp}\right)\right) \otimes \mathrm{d} \Delta \hat{\sigma}\left(y, \boldsymbol{k}_{\perp}\right) \otimes \Delta^{N} D_{h / q^{\uparrow}}\left(z, \boldsymbol{p}_{\perp}\right)}^{\int \mathrm{d} \phi \mathrm{~d} \phi_{S}\left[\mathrm{~d} \sigma^{\uparrow}-\mathrm{d} \sigma^{\downarrow}\right] \sin \left(\phi+\phi_{S}\right)} \\
A_{U T}^{\sin \left(\phi+\phi_{S}\right)} \equiv 2 \frac{\int \mathrm{~d} \phi \mathrm{~d} \phi_{S}\left[\mathrm{~d} \sigma^{\uparrow}+\mathrm{d} \sigma^{\downarrow}\right]}{\int D_{h / q^{\uparrow}}\left(z, p_{\perp}\right) s_{q} \cdot\left(\hat{\boldsymbol{p}}_{q} \times \hat{\boldsymbol{p}}_{\perp}\right)} \\
\mathrm{d} \Delta \hat{\sigma}=\mathrm{d} \hat{\sigma}^{\ell q^{\uparrow} \rightarrow \ell q^{\uparrow}-\mathrm{d} \hat{\sigma}^{\ell q^{\uparrow} \rightarrow \ell q^{\downarrow}}}
\end{gathered}
$$

Collins effect in SIDIS couples to transversity

HERMES Collins asymmetry

independent information on Collins function from $e^{+} e^{-}$processes BELLE @ KEK

$$
\begin{aligned}
& A_{12}\left(z_{1}, z_{2}, \theta, \varphi_{1}+\varphi_{2}\right) \equiv \frac{1}{\langle d \sigma\rangle} \frac{d \sigma^{e^{+} e^{-} \rightarrow h_{1} h_{2} X}}{d z_{1} d z_{2} d \cos \theta d\left(\varphi_{1}+\varphi_{2}\right)} \\
& =1+\frac{1}{4} \frac{\sin ^{2} \theta}{1+\cos ^{2} \theta} \cos \left(\varphi_{1}+\varphi_{2}\right) \times \frac{\sum_{q} e_{q}^{2}\left(\Delta^{N} D_{h_{1} / q^{\dagger}}\right)\left(z_{1}\right)\left(\Delta^{N} D_{h_{2} / \bar{q}+\bar{t}}\right)\left(z_{2}\right)}{\sum_{q} e_{q}^{2} D_{h_{1} / q}\left(z_{1}\right) D_{h_{2} / \bar{q}}\left(z_{2}\right)}
\end{aligned}
$$

Transversity \& Collins function phenomenology in SIDIS and e+e-

Same simple parametrization as for Sivers, but Collins effect has been clearly observed by three independent experiments: HERMES, COMPASS and BELLE

Collins function expected to be universal
QCD evolution important, as BELLE data are at a much higher energy than SIDIS data

extracted Collins functions

M.A., M. Boglione, U. D'Alesio, A. Kotzinian, S. Melis, F. Murgia, A. Prokudin, C. Türk

Predictions for COMPASS, with a proton target, and comparison with data

A. Martin, DIS2010
A_{N} in $p p \rightarrow \pi X$, the big challenge

$$
\begin{gathered}
A_{N} \equiv \frac{d \sigma^{\uparrow}-d \sigma^{\uparrow}}{d \sigma^{\uparrow}+d \sigma^{\uparrow}} \\
\text { E704 } \sqrt{s}=20 \mathrm{GeV} \\
0.7<\mathrm{p}_{\top}<2.0
\end{gathered}
$$

and all beautiful RHIC data, persisting at high energy...

no SSA in collinear factorization

$$
\mathrm{d} \sigma^{\uparrow}-\mathrm{d} \sigma^{\downarrow}=\sum_{a, b, c, d=q, \bar{q}, g}^{\underbrace{}_{\text {transversity }} \underbrace{\Delta_{T} f_{a}}_{\substack{\text { SSA }}} \otimes f_{b} \otimes \underbrace{\left[\mathrm{~d} \hat{\sigma}^{\uparrow}-\mathrm{d} \hat{\sigma}^{\downarrow}\right]}_{\text {PQCD elementary }} \otimes \underbrace{D_{\pi / c}}_{\mathrm{FF}}}
$$

$$
A_{N}=\frac{\mathrm{d} \sigma^{\uparrow}-\mathrm{d} \sigma^{\downarrow}}{\mathrm{d} \sigma^{\uparrow}+\mathrm{d} \sigma^{\downarrow}} \propto \hat{a}_{N} \propto \frac{m_{q}}{E_{q}} \alpha_{s} \quad \begin{gathered}
\text { was considered } \\
\text { almost a theorem }
\end{gathered}
$$

Only one large scale, P_{T}. Any role for TMDs?

TMD factorization not proven

1. Generalization of collinear scheme (assuming factorization)

$$
\mathrm{d} \sigma^{\uparrow}=\sum_{a, b, c=q, \bar{q}, g} \underbrace{f_{a / p^{\uparrow}}\left(x_{a}, \boldsymbol{k}_{\perp a}\right)}_{\text {single spin effects in TMDs }} \otimes \underbrace{f_{b / p}\left(x_{b}, \boldsymbol{k}_{\perp b}\right)} \otimes \mathrm{d} \hat{\sigma}^{a b \rightarrow c d}\left(\boldsymbol{k}_{\perp a}, \boldsymbol{k}_{\perp b}\right) \otimes \underbrace{D_{\pi / c}\left(z, \boldsymbol{p}_{\perp \pi}\right)}
$$

M.A., M. Boglione, U. D'Alesio, E. Leader, S. Melis, F. Murgia, A. Prokudin, ... (Field-Feynman in unpolarized case)

TMD factorization at work

U. D'Alesio, F. Murgia

STAR data

prediction

Sivers effect $p p \rightarrow \pi X$

2. Higher-twist partonic correlations

(Efremov, Teryaev; Qiu, Sterman; Kouvaris, Vogelsang, Yuan;
Bacchetta, Bomhof, Mulders, Pijlman; Koike ...)
higher-twist partonic correlations - factorization OK

$$
\mathrm{d} \Delta \sigma \propto \sum_{a, b, c} \underbrace{T_{a}\left(k_{1}, k_{2}, \boldsymbol{S}_{\perp}\right)}_{\text {twist-3 functions }} \otimes f_{b / B}\left(x_{b}\right) \otimes \underbrace{H^{a b \rightarrow c}\left(k_{1}, k_{2}\right)}_{\substack{\text { hard interaction, } \\ \text { not a cross section }}} \otimes D_{h / c}(z)
$$

possible project: compute T_{a} using SIDIS extracted Sivers functions

fits of E704 and STAR data

Kouvaris, Qiu, Vogelsang, Yuan
sign mismatch
(Kang, Qiu, Vogelsang, Yuan)
compare

$$
g T_{q, F}(x, x)=-\left.\int d^{2} k_{\perp} \frac{\left|k_{\perp}\right|^{2}}{M} f_{1 T}^{\perp q}\left(x, k_{\perp}^{2}\right)\right|_{\mathrm{SIDIS}}
$$

as extracted from fitting A_{N} data, with that obtained by inserting in the the above relation the SIDIS extracted Sivers functions
similar magnitude, but opposite sign!
the same mismatch does not occurr adopting
TMD factorization; the reason is that the hard scattering part in higher-twist factorization is negative

TMDs in Drell-Yan processes

factorization holds, two scales, M^{2}, and $q_{T} \ll M$

$$
\mathrm{d} \sigma^{D-Y}=\sum_{a} f_{q}\left(x_{1}, \boldsymbol{k}_{\perp 1} ; Q^{2}\right) \otimes f_{\bar{q}}\left(x_{2}, \boldsymbol{k}_{\perp 2} ; Q^{2}\right) \mathrm{d} \hat{\sigma}^{q \bar{q} \rightarrow \ell^{+} \ell^{-}}
$$

direct product of TMDs, no fragmentation process

cross-section: most general pp leading-twist expression

$$
\begin{aligned}
& \frac{d \sigma}{d^{4} q d \Omega}=\frac{\alpha_{e m}^{2}}{F q^{2}} \times \quad \text { S. Arnold, A. Metz and M. Schlegel, arXiv:0809.2262 [hep-ph] } \\
& \left\{\left(\left(1+\cos ^{2} \theta\right) F_{U U}^{1}+\left(1-\cos ^{2} \theta\right) F_{U U}^{2}+\sin 2 \theta \cos \phi F_{U U}^{\cos \phi}+\sin ^{2} \theta \cos 2 \phi F_{U U}^{\cos 2 \phi}\right)\right. \\
& +S_{a L}\left(\sin 2 \theta \sin \phi F_{L U}^{\sin \phi}+\sin ^{2} \theta \sin 2 \phi F_{L U}^{\sin 2 \phi}\right) \\
& +S_{b L}\left(\sin 2 \theta \sin \phi F_{U L}^{\sin \phi}+\sin ^{2} \theta \sin 2 \phi F_{U L}^{\sin 2 \phi}\right) \\
& +\left|\vec{S}_{a T}\right|\left[\sin \phi_{a}\left(\left(1+\cos ^{2} \theta\right) F_{T U}^{1}+\left(1-\cos ^{2} \theta\right) F_{T U}^{2}+\sin 2 \theta \cos \phi F_{T U}^{\cos \phi}+\sin ^{2} \theta \cos 2 \phi F_{T U}^{\cos 2 \phi}\right)\right. \\
& \left.+\cos \phi_{a}\left(\sin 2 \theta \sin \phi F_{T U}^{\sin \phi}+\sin ^{2} \theta \sin 2 \phi F_{T U}^{\sin 2 \phi}\right)\right] \\
& +\left|\vec{S}_{b T}\right|\left[\sin \phi_{b}\left(\left(1+\cos ^{2} \theta\right) F_{U T}^{1}+\left(1-\cos ^{2} \theta\right) F_{U T}^{2} \boldsymbol{A} \sin 2 \theta \cos \phi \boldsymbol{H}_{U T}^{\boldsymbol{\operatorname { c o s } \phi}}+\sin ^{2} \theta \cos 2 \phi F_{U T}^{\cos 2 \phi}\right)\right. \\
& \left.+\cos \phi_{b}\left(\sin 2 \theta \sin \phi F_{U T}^{\sin \phi}+\sin ^{2} \theta \sin 2 \phi \boldsymbol{F}_{U T}^{\sin 2 \phi}\right)\right] \\
& +S_{a L} S_{b L}\left(\left(1+\cos ^{2} \theta\right) F_{L L}^{1}+\left(1-\cos ^{2} \mathcal{L}^{2}+\sin 2 \theta \operatorname{cs} \phi F_{L L}^{\cos \phi}+\sin ^{2} \theta \cos 2 \phi F_{L L}^{\cos 2 \phi}\right)\right. \\
& +S_{a L}\left|\vec{S}_{b T}\right|\left[\cos \phi_{b}\left(\left(1+\cos ^{2} \theta\right) F_{L T} 1-\cos ^{2} \Delta F_{L T}^{2}+\sin 2 \theta \cos \phi F_{L T}^{\cos \phi}+\sin ^{2} \theta \cos 2 \phi F_{L T}^{\cos 2 \phi}\right)\right. \\
& \left.+\sin \phi_{b}\left(\sin 2 \theta \sin \phi F_{L T}^{\sin \phi}+\sin { }^{2} \theta \sin 2 \phi F_{L T}^{\sin 2 \phi}\right)\right] \\
& +\left|\vec{S}_{a T}\right| S_{b L}\left[\cos \phi_{a}\left(\left(1+\cos ^{2} \theta\right) F_{T L}^{1}+\cos ^{2} \theta\right) F_{T L}^{2}+\sin 2 \theta \cos \phi F_{T L}^{\cos \phi}+\sin ^{2} \theta \cos 2 \phi F_{T L}^{\cos 2 \phi}\right) \\
& \left.+\sin \phi_{a}\left(\sin 2 \theta \sin \phi F_{5}^{\boldsymbol{X}}+\sin ^{2} \theta \sin 2 \phi F_{T L}^{\sin 2 \phi}\right)\right] \\
& +\left|\vec{S}_{a T}\right|\left|\vec{S}_{b T}\right|\left[\cos \left(\phi_{a}+\phi(1)+\cos ^{2} \theta\right) F_{T T}^{1}+\left(1-\cos ^{2} \theta\right) F_{T T}^{2}+\sin 2 \theta \cos \phi F_{T T}^{\cos \phi}+\sin ^{2} \theta \cos 2 \phi F_{T T}^{\cos 2 \phi}\right) \\
& +\cos \left(\phi_{a}-\phi_{b}\right)\left(\left(1+\cos ^{2} \theta\right) \bar{F}_{T T}^{1}+\left(1-\cos ^{2} \theta\right) \bar{F}_{T T}^{2}+\sin 2 \theta \cos \phi \bar{F}_{T T}^{\cos \phi}+\sin ^{2} \theta \cos 2 \phi \bar{F}_{T T}^{\cos 2 \phi}\right) \\
& +\sin \left(\phi_{a}+\phi_{b}\right)\left(\sin 2 \theta \sin \phi F_{T T}^{\sin \phi}+\sin ^{2} \theta \sin 2 \phi F_{T T}^{\sin 2 \phi}\right) \\
& \left.\left.+\sin \left(\phi_{a}-\phi_{b}\right)\left(\sin 2 \theta \sin \phi \bar{F}_{T T}^{\sin \phi}+\sin ^{2} \theta \sin 2 \phi \bar{F}_{T T}^{\sin 2 \phi}\right)\right]\right\}
\end{aligned}
$$

Sivers effect in D-Y processes

By looking at the $d^{4} \sigma / d^{4} q$ cross section one can single out the Sivers effect in D-Y processes

$$
\mathrm{d} \sigma^{\uparrow}-\mathrm{d} \sigma^{\downarrow} \propto \sum_{q} \Delta^{N} f_{q / p^{\uparrow}}\left(x_{1}, \boldsymbol{k}_{\perp}\right) \otimes f_{\bar{q} / p}\left(x_{2}\right) \otimes \mathrm{d} \hat{\sigma}
$$

$$
q=u, \bar{u}, d, \bar{d}, s, \bar{s}
$$

$$
A_{N}^{\sin \left(\phi_{S}-\phi_{\gamma}\right)} \equiv \frac{2 \int_{0}^{2 \pi} \mathrm{~d} \phi_{\gamma}\left[\mathrm{d} \sigma^{\uparrow}-\mathrm{d} \sigma^{\downarrow}\right] \sin \left(\phi_{S}-\phi_{\gamma}\right)}{\int_{0}^{2 \pi} \mathrm{~d} \phi_{\gamma}\left[\mathrm{d} \sigma^{\uparrow}+\mathrm{d} \sigma^{\downarrow}\right]}
$$

Predictions for A_{N}

Sivers functions as extracted from SIDIS data, with opposite sign

Conclusions

The3-dimensional exploration of the nucleon has just started: collect as much data as possible and try to reconstruct the nucleon phase-space structure

TMDs describe the momentum distribution; the actual knowledge covers limited kinematical regions, and assumes (too) simple functional forms

The properties of the Sivers function and its different role in different processes, have to be investigated and much more to do new experiments would help so much (ENC/EIC, Drell-Yan,)

