Recent Developments in Quarkonium and Open Flavour Production Calculations

Mathias Butenschön (Hamburg University)

XIV International Conference on Hadron Spectroscopy

Production and decay rates of Heavy Quarkonia

Heavy Quarkonia: Bound states of heavy quark and antiquark.

- Charmonia (*cc̄*) and Bottomonia (*bb̄*)
- Top decays to fast for bound state.

The classic approach: Color-singlet model

- Calculate cross section for heavy quark pair in physical color singlet (=color neutral) state. In case of J/ψ : $c\bar{c}[{}^{3}S_{1}[{}^{1}]]$
- Multiply by quarkonium wave function (or its derivative) at origin
- Mid 90's: Strong disagreement with Tevatron data apparent

Nonrelativistic QCD (NRQCD):

- Rigorous effective field theory: Bodwin, Braaten, Lepage (1995)
- Based on factorization of soft and hard scales (Scale hierarchy: Mv², Mv << A_{QCD} << M)</p>
- Could explain hadroproduction at Tevatron

J/ψ Production with NRQCD

Factorization theorem: $\sigma_{J/\psi} = \sum_{n} \sigma_{c\overline{c}[n]} \cdot \langle O^{J/\psi}[n] \rangle$

- *n*: Every possible Fock state, including color-octet states.
- $\sigma_{c\bar{c}[n]}$: Production rate of $c\bar{c}[n]$, calculated in perturbative QCD
- **<** $O^{J/\psi}[n]$ **>**: Long distance matrix elements (LDMEs): describe $c\bar{c}[n] \rightarrow J/\psi$, universal, extracted from experiment.

Scaling rules: LDMEs scale with definite power of $v (v^2 \approx 0.2)$:

scaling	<i>V</i> ³	V ⁷	<i>V</i> ¹¹
п	³ S ₁ ^[1]	¹ S ₀ ^[8] , ³ S ₁ ^[8] , ³ P _J ^[8]	

Double expansion in v and a_s

Leading term in v ($n = {}^{3}S_{1}^{[1]}$) equals **color-singlet model**.

J/ψ Production with NRQCD: Knowledge until 2005

- CO LDMEs extracted from Born fit to Tevatron (one linear combination). Used for predictions at HERA and LEP.
- No NLO calculations for color-octet (CO) contributions yet!
- Universality of CO LDMEs open question.

NLO Corrections to Color Octet Contributions

- Petrelli, Cacciari, Greco, Maltoni, Mangano (1998):
 Photo- and hadroproduction (Only 2 → 1 processes)
- Klasen, Kniehl, Mihaila, Steinhauser (2005):
 γγ scattering at LEP (neglecting resolved photons)
- M.B., Kniehl (2009):
 Photoproduction at HERA (neglecting resolved photons)
- Zhang, Ma, Wang, Chao (2009):
 e⁺e⁻ scattering at *B* factories
- Ma, Wang, Chao (2010): Hadroproduction (including feed-down contributions)
- M.B., Kniehl (2010): Hadroproduction (combined HERA-Tevatron fit)

Necessary: Only recently:

A rigorous global data analysis!

recently: Fit CO LDMEs to 194 data points from 10 experiments. → Test LDME universality. [M.B., Kniehl (2011)]

M.B., Kniehl (2011): Global Fit of CO LDMEs

 $\begin{aligned} &< O[^{1}S_{0}^{[8]}] > = (4.97 \pm 0.44) \cdot 10^{-2} \text{ GeV}^{3} \\ &< O[^{3}S_{1}^{[8]}] > = (2.24 \pm 0.59) \cdot 10^{-3} \text{ GeV}^{3} \\ &< O[^{3}P_{0}^{[8]}] > = (-1.61 \pm 0.20) \cdot 10^{-2} \text{ GeV}^{5} \end{aligned}$

In Detail: Hadroproduction (LHC, Tevatron)

- Color singlet model not enough to describe data (although increase from Born to NLO)
- CS+CO can describe data.
- ${}^{3}P_{J}^{[8]}$ short distance cross section **negative** at $p_{T} > 7$ GeV.
- But: Short distance cross sections and LDMEs unphysical
 No problem!

In Detail: Photoproduction (HERA)

- Photoproduction = Photon-proton scattering in ep collider
- Distributions: Transverse momentum (p_T), photon-proton c.m. energy (W), and z = Fraction of photon energy going to J/ψ .
- Again: Color singlet alone below the data, CS+CO describes data well.
- Calculation includes resolved photon contributions: Important at low z.

In Detail: e^+e^- and $\gamma\gamma$ Collisions

Electron-Positron Collisions at BELLE:

- **CS:** Large overlap with data, **CS+CO:** Small overlap.
- Experimentally measurement of total cross section difficult, discrepancies between BELLE and BABAR.
- For e⁺e⁻ color singlet, NNLO terms been calculated, increasing cross section. Not part of the global fit. [Ma, Zhang, Chao (2009); Gong, Wang (2009)]

Two Photon scattering at DELPHI (LEP):

- Includes direct, single and double resolved photons.
- CS below data, but also **CS+CO** prediction **too low**. Possible explanations:
 - Uncertainties in the measurement (Just 16 events involved!)
 - □ Hint at problems with LDME universality.

Improve the Color Singlet Model: "NNLO*"

- Idea: At large p_T gluon fragmentation channels dominate, but in CSM is NNLO process. → Try to estimate these and similar contributions without performing full NNLO calculation.
- **NNLO*:** Consider only tree level $p\overline{p} \rightarrow QQ + 3$ Jets and impose IR cutoffs.
- Result: For bottomonium Υ(1S) and charmonium ψ(2S), color singlet contributions might be enough to describe data [Artoisenet, Campbell, Lansberg, Maltoni, Tramontano (2008); Lansberg (2009)]:

Status for J/ψ Polarization

Available calculations for photo- and hadroproduction:

- NLO color singlet model predictions [Gong, Wang (2008); Artoisenet, Campbell, Maltoni, Tramontano (2009); Chang, Li, Wang (2009)]
- *k_T* factorization predictions [Baranov (2002); Baranov (2008)]
- **Color octet** contributions so far only at leading order.

- α or λ = -1 (+1): Fully longitudinally (transversely) polarized J/ψ .
- Still large theoretical and experimental uncertainties. LHC data awaited.
- Will be crucial observable to distinguish production mechanisms.

OPEN FLAVOUR PRODUCTION

Open flavour production: (D, B, A, ...)

- Hadrons with one heavy quark (c, b) and one or two light quarks (u, d, s)
- Production through fragmentation of outgoing QCD partons.

Two traditional methods: (Example: Heavy quark c)

- Fixed-Flavour-Number-Scheme (FFNS):
 - ▶ Incoming quarks: u, d, s (m = 0). Outgoing: u, d, s (m = 0), c (m = m_c)
 - Reliable only at $m_c^2 \lesssim p_T^2$, because of $\log(p_T^2/m_c^2)$ terms.
- Zero-Mass-Variable-Flavour-Number scheme (ZM-VFNS):
 - ▶ Incoming quarks: u, d, s, c (m = 0). Outgoing: u, d, s, c (m = 0)
 - Reliable only at $m_c^2 \ll p_T^2$, because of missing mass terms.

Interpolating schemes: Combining FFNS and ZM-VFNS:

- General-Mass-Variable-Flavour-Number-Scheme (GM-VFNS)
- Fixed-Order NLL scheme (FONLL)

S-ACOT: THEORETICAL BASIS FOR THE GM-VFNS

Factorization Formula: [1]

$$d\sigma(p\bar{p} \to DX) = \sum_{i,j,k} \int dx_1 \ dx_2 \ dz \ f_{i/p}(x_1,\mu_F) \ f_{j/\bar{p}}(x_2,\mu_F)$$
$$\times d\hat{\sigma}_{ij \to kX} \left(\mu_F,\mu'_F,\alpha_s(\mu_R),\frac{m_c}{p_T}\right) \ D^D_k(z,\mu'_F)$$

- $d\hat{\sigma}_{ij \to kX} \left(\mu_F, \mu'_F, \alpha_s(\mu_R), \frac{m_c}{\rho_T} \right)$: Hard scattering cross sections. Heavy quark mass m_c kept.
- PDFs f_{i/p}(x₁, μ_F), f_{j/p̄}(x₂, μ_F): i, j = g, u, d, s, c
- FFs $D_k^D(z, \mu_F')$: k = g, u, d, s, c
- Factorization and PDF/FF DGLAP evolution like in zero-mass case. [1]
- \implies Need short distance coefficients including heavy quark masses.

[1] J. Collins, 'Hard-scattering factorization with heavy quarks: A general treatment', PRD58(1998)094002

M. Butenschön

GM-VFNS: LIST OF SUBPROCESSES

Only light lines	Heavy quark initiated ($m_Q = 0$)	Mass effects: $m_Q \neq 0$
$\bigcirc gg \to qX$	0 -	$\textcircled{1} gg \rightarrow QX$
$\bigcirc gg \to gX$	2 -	2 -
$\bigcirc qg \to gX$	$\bigcirc Qg \to gX$	3 -
		4 -
$\bigcirc q\bar{q} \to gX$	$\bigcirc Q\bar{Q} \to gX$	5 -
$\bigcirc q\bar{q} \rightarrow qX$	$\bigcirc Q\bar{Q} \to QX$	6 -
$\bigcirc qg \rightarrow \bar{q}X$	$\bigcirc Qg \to \bar{Q}X$	0 -
$\bigcirc qg \to \bar{q}'X$	$\bigcirc Qg \to \bar{q}X$	$\bigcirc qg \to \bar{Q}X$
$\bigcirc qg \to q'X$	$\bigcirc Qg \to qX$	$\bigcirc qg \to QX$
$\bigcirc qq \rightarrow gX$	$\bigcirc QQ \rightarrow gX$	0 -
$\bigcirc qq \rightarrow qX$	$\textcircled{0} QQ \rightarrow QX$	0 -
	$\textcircled{2} Q\bar{Q} \rightarrow qX$	$\textcircled{0}$ $q\bar{q} ightarrow QX$
$\bigcirc q\bar{q}' \to gX$	$igodoldsymbol{B}$ $Qar q o g X, qar Q o g X$	🚯 -
	${f Q} {f Q} {ar q} o {f Q} X$, ${f q} {ar Q} o {f q} X$	🚇 -
(b) $qq' \rightarrow gX$	(b) $Qq \rightarrow gX, qQ \rightarrow gX$	(5 -
$0 qq' \rightarrow qX$	${iglion 0} {iglion Q} q o Q X, q Q o q X$	<u>(</u> 6) -

 \oplus charge conjugated processes

GM-VFNS: HEAVY QUARK MASS TERMS

Mass terms contained in the hard scattering coefficients:

```
d\hat{\sigma}(\mu_F, \mu_{F'}, \alpha_s(\mu_R), \frac{m_Q}{p_T})
```

Two ways to derive them:

Compare massless limit of a massive fixed-order calculation with a massless MS calculation to determine subtraction terms

[Kniehl, Kramer, Schienbein, Spiesberger, PRD71(2005)014018]

OR:

Perform mass factorization using partonic (perturbative) PDFs and FFs [Kniehl, Kramer, Schienbein, Spiesberger, EPJC41(2005)199]

GM-VFNS: APPLICATIONS

Applications available for

- γ + γ → D^{*±} + X direct and resolved contributions
- $\gamma^* + p \rightarrow D^{*\pm} + X$ photoproduction
- p + p̄ → (D⁰, D^{*±}, D[±], D[±]_s, Λ[±]_c) + X good description of Tevatron and new LHC data
- $p + \bar{p} \rightarrow B + X$ works for Tevatron data at large p_T
- work in progress for $e + p \rightarrow D + X$

EPJC22, EPJC28

EPJC38, EPJC62

PRD71, PRL96, PRD79

PRD77

FITTING THE FRAGMENTATION FUNCTIONS (KKKSC)

FFs for $c \rightarrow D$ from fitting to e^+e^- data

2008 analysis based on GM-VFNS $\mu_0 = m_c$

Global fit: Data from ALEPH, OPAL, BELLE, CLEO

[Kneesch, Kramer, Kniehl, Schienbein NPB799 (2008)]

Tension between low and high energy data sets \rightarrow Speculations about non-perturbative (power-suppressed) terms

Hadroproduction of D^0, D^+, D^{*+}, D^+_s at Tevatron

GM-VFNS results using KKKSc FFs [1]:

• $d\sigma/dp_T$ [nb/GeV] $|y| \le 1$, prompt charm ($b \to D$ subtracted)

- Uncertainty band: $1/2 \le \mu_R/m_T, \mu_F/m_T \le 2$ $(m_T = \sqrt{p_T^2 + m_c^2})$
- CDF data from run II [2]
- GM-VFNS describes data within errors.

Kniehl, Kramer, Schienbein, Spiesberger, PRD79(2009)094009

[2] Acosta et al., PRL91(2003)241804

M. Butenschön

ALICE: D^0 and D^+ Cross Sections

• Prelim. results presented by A. Dainese at LHC Physics Day, 3. Dec. 2010:

Both FONLL and GM-VFNS predictions compatible with data.

M. Butenschön

LHCB: D⁺ CROSS SECTION (TALK BY P. URQUIJO AT LPCC, DEC. 2010)

• Prelim. results for $D^+ \rightarrow K^- \pi^+ \pi^+$. Data: 14 % correlated error not shown.

BAK et al.= GM-VFNS: Kniehl, Kramer, Schienbein, Spiesberger
MC et al.= FONLL: Cacciari, Frixione, Mangano, Nason, Ridolfi

M. Butenschön

THE SUMMARY

Production of heavy quarkonia:

- NRQCD provides rigorous factorization theorem for production of quarkonia. But: Necessary to proof LDME universality.
- Recent global NLO analysis: All inclusive J/ψ production data except $\gamma\gamma$ can be described by NRQCD with unique CO LDME set.
- Color singlet alone falls short of data everywhere except in e⁺e⁻.
- LHC results coming in for J/ψ polarization, higher charmonia and bottomonia.

Open flavour production:

- Two schemes interpolating between FFNS (low p_T) and ZM-VFNS (high p_T): FONLL and GM-VFNS.
- Both schemes can describe *D*, *B* and Λ photo- and hadroproduction data well.
- FONLL also applicable for $p_T < 2m_Q$ region.
- Factorization theorem of GM-VFNS on more solid theoretical ground.