The Theory of X,Y, and Z States

XIV International Conference on Hadron Spectroscopy

R.P. Springer, Munich, June 2011

Observed spectrum of states (above DD)

Examples from theory landscape

Effective field theory for the X(3872)

Selected X(3872) predictions

Reviews: Brambilla et al. 1010.5827; Voloshin 0711.4556; (hadron11:9 talks on 3872; 6 on other X,Y,Z)

X,Y,Z states from Table 9, Brambilla et al. 1010.5827

Techniques/Descriptions/Strategies **QCD** Sum Rules Non-relativistic QCD Heavy Quark Effective Theory Heavy Hadron Chiral Perturbation Theory X-EFT **Potential Models** Lattice Mixtures Molecule Baryonium Tetraquark **Coupled channels Hybrids** Hadrocharmonium

Hadron 2011 X,Y,Z Theory talks/posters (to see or to have seen)

F. De Fazio (Plenary II) EFT radiative decays X(3872)

C.Zanetti (Heavy Hadrons I) QCD Sum Rules X(3872)

H. Noya (Quarkonia I) Diquark Cluster model (4-q- states) X(3940),X(4260),X(4350),X(4430),X(4660)

R. Molina (Poster) dynamically generated Y(3940),Z(3930),X(4160)

D. Rodriquez Entem (Quarkonia 4) Molecules X(3872),X(3915),X/Y(3940),Y(4008)

M. Karliner (Heavy Hadrons 5) Tetraquarks X(3872), etc.

Hadrocharmonium

 $J/\psi, \psi(2S), \dots$ even Υ ? affinity for light hadronic matter

Y(4260): BaBar/Belle/Cleo; no D's

- Charmonium Hybrid -- gluonic excitations
 Lattice; heavy quark symmetry; NRQCD
 Potential yields tower of excitations¹
- Bound state or molecule (next slide)
- -Tetraquark 2,3 [cs][\overline{cs}]
- Hadrocharmonium (previous slide)
- **QCDSR**³ $[c\bar{q}]_1[\bar{c}q]_1; (S+V), (P+A)$

¹Horn/Mandula; Hasenfratz/Horgan/Kuti/Richard; Juge/Kuti/ Morningstar; Bali/Pineda; Zhu; Kou/Pene; Close/Page

 2 Maiani/Riquer/Piccinini/Polosa 3 Nielsen/Navarra/Lee

Molecules: do the constituents retain their identify as hadrons? (details in the X(3872) section)

X(3872)	$\overline{D}^0 D^{*0}$	
X(3915)	$\overline{D}^{*0}D^{*0} + D^{*+}D^{*-}$	BGL
Y(4140)	$D_{s}^{*+}D_{s}^{*-}$	BGL
Y(4260)	$D_0\overline{D}^*,\psi(2S)f_0(980)$	AN,TKGO
$Z(4430)^+$	$D^{*+}\overline{D}_1^0$	LMNN/BGL
X(4630)	$\psi(2S)f_0(980)$	GHHM
Y(4660)	$\psi(2S)f_0(980)$	GHM

BGL=Branz,Gutsche,Lyubovitskij LMNN=Lee,Miharo,Navarro,Nielsen TKGO=Torres,Kehmchandari,Gamermann,Oset AN=Albuquerque,Nielsen GH(H)M=Guo,(Haidenbauer),Hanhart,Meissner

b Exotics above threshold - Belle

MeV	$Z_b(10610)$	$Z_b(10650)$	$Y_b(10888)$
mass	10608.1 ± 1.7	10653.3 ± 1.5	10888.4 ± 3.0
width	15.5 ± 2.4	14.0 ± 2.8	$30.7^{+8.0}_{-7.7}$
mode	$ \begin{array}{c c} \Upsilon(nS)\pi^{+}\pi^{-} \\ n = 1, 2, 3 \\ h_{b}(mP)\pi^{+}\pi^{-} \\ m = 1, 2 \end{array} $	$ \begin{array}{c} \Upsilon(nS)\pi^{+}\pi^{-} \\ n = 1, 2, 3 \\ h_{b}(mP)\pi^{+}\pi^{-} \\ m = 1, 2 \end{array} $	$\Upsilon(nS)\pi^+\pi^-$ $n = 1, 2, 3$

Explanations: $Y_b(1^{--})$ could be analog of Y(4260)hybrid $b\overline{b}g$

disturbed $\Upsilon(5S)$

 $Z_b: I^G = 1^+ J^P = 1^+$ This conference : A.Kuzmin charged : cannot be bb alone tetraquarks: Karliner/Lipkin prediction $\Upsilon(nS) \to \pi^{\pm} T_{bb}^{\mp} \to \Upsilon(mS) \pi^{-} \pi^{+}$ $\overline{b}b\overline{d}u$ $\overline{b}b\overline{u}d$ isovector charged tetraquark prediction : look for subthreshold I = 0 state Molecular overlap: Bugg $\overline{B}B^*$ threshold = 10604.3 ± 0.6 MeV $Z_b(10610)$ analogous to X(3872)? \overline{B}^*B^* threshold = $\overline{B}B^* + 46$ MeV $Z_b(10650)$ analogous to X(3915)? hypothesis : each is $\overline{b}b + \overline{B}B^{(*)}$

Voloshin: more molecules from heavy quark spin symmetry; also predicts decay ratios

$$1^{-}(0^{+}) = \frac{\sqrt{3}}{2}0^{-}_{b\bar{b}} \times 0^{-}_{lt} + \frac{1}{2}\left(1^{-}_{b\bar{b}} \otimes 1^{-}_{lt}\right)_{J=0}$$

 $\rightarrow \eta_b \pi, \chi_b \pi, \Upsilon \rho$

X(3872): molecular state?

$$\frac{1}{\sqrt{2}} \left(D^0 \bar{D}^{0*} + \bar{D}^0 D^{0*} \right) \qquad \text{Isospin issue:}$$

$$\frac{\Gamma[\to J/\psi \pi^+ \pi^- \pi^0]}{\Gamma[\to J/\psi \pi^+ \pi^-]} = 1.0 \pm 0.4 \pm 0.3 \qquad \text{Belle 2005}$$

$$\frac{\Gamma[\rightarrow J/\psi\omega]}{\Gamma[\rightarrow J/\psi\pi^+\pi^-]} = 0.8 \pm 0.3$$
 BaBar 2010

 $J^{PC} = 1^{++} \text{ or } 2^{-+}$ multipole question

 $m_{D^0\bar{D}^{0*}} - m_{X(3872)} = 0.42 \pm 0.39 \text{ MeV}$

X-Effective Field Theory: Fleming, Kusunoki, Mehen, van Kolck

Factorization theorems: Braaten/Kusunoki/Lu

Rate =
$$\frac{1}{3} \sum_{\lambda} |\langle 0| \frac{1}{\sqrt{2}} \epsilon_i(\lambda) (V^i \bar{P} + \bar{V}^i P) |X(3872, \lambda) \rangle|^2$$

 $\times \text{ (phase space)} \times |\mathcal{C} (\overline{D} D^* \to f)|^2$

Universal shallow-bound-state properties from effective range theory: Braaten/Voloshin...

$$\psi_{DD^*}(r) \propto \frac{e^{-\gamma r}}{r} \quad B = \frac{1}{2\mu_{D^*D}a^2} \quad \frac{\gamma \sim 20 \text{ MeV}}{a \sim 7 \text{ fm}}$$
$$\frac{\alpha \sim 7 \text{ fm}}{\langle r \rangle \sim 5 \text{ fm}}$$

Compare Systematic NN treatment: NN-EFT (no pions)

Both S-wave scattering lengths anomalously large => momentum expansion fails => reorganize to treat C's nonperturbatively

$$A = -\frac{4\pi}{M} \frac{1}{1/a + ip} + \cdots$$
nge:
$$A = -\frac{4\pi}{M} \frac{1}{1/a - \frac{1}{2}rp^2 + ip} + \cdots$$

with effective range:

EM effects easily included

IF
$$X(3872) \sim \frac{1}{\sqrt{2}} (D^0 \overline{D}^{*0} + D^{*0} \overline{D}^0)$$

 $m_X = (3871.55 \pm 0.20)$ Mev $E_X = (-0.26 \pm 0.41)$ MeV $a^{-1} \sim \sqrt{2\mu_X B_X}$ $\mathcal{L} = \sum_{j=D^0, D^{*0}, \bar{D}^0, \bar{D}^{*0}} \psi_j^{\dagger} \left(i\partial_t + \frac{\nabla^2}{2m_j} \right) \psi_j + \Delta X^{\dagger} X$ $-\frac{g}{\sqrt{2}} \left(X^{\dagger}(\psi_{D^{0}}\psi_{\bar{D}^{*0}} + \psi_{D^{*0}}\psi_{\bar{D}^{0}}) + \text{h.c.} \right) + \cdots$

Results depend only on scattering length $a_{D^0 X} = -9.7a$ $a_{D^{*0} X} = -16.6a$

Three body cross section vs scattering length

LHC possibilities: $B_c \sim 10^7$ per week $B\overline{B}$ final state interactions $\sigma(b\overline{b}) \sim 0.4$ mb $\sigma(b\overline{b}b\overline{b}) \sim 5$ fb

 $\beta^{-1} \sim 356 \text{ MeV}$ Hu, Mehen

 $g_2 \sim 0.81 \text{ GeV}^{-3/2}$ Guo et al., 0907.0521

$$\mathcal{L} = \frac{e\beta}{2} \operatorname{Tr}[H_1^{\dagger} H_1 \vec{\sigma} \cdot \vec{B} Q_{11}] + c.c. + i \frac{g_2}{2} \operatorname{Tr}[J^{\dagger} H_1 \vec{\sigma} \cdot \overleftrightarrow{\partial} \bar{H}_1] + h.c. + i \frac{ec_1}{2} \operatorname{Tr}[J^{\dagger} H_1 \vec{\sigma} \cdot \vec{E} \bar{H}_1] + h.c. \qquad J = (\eta_c(2S), \psi(2S)) + H_a \sim (D_a, D_a^*); \ a = 1, 2, 3$$
$$\frac{\Gamma(X(3872) \to \psi(2S)\gamma)}{\Gamma_{tot}} > 0.03 \text{ (BaBar, PDG)}$$

Polarization measurement would shed light on relative importance of decay mechanisms

• Polarization as function of $\lambda \equiv \frac{3c_1}{q_2\beta} \approx 1.3 \frac{c_1}{\text{GeV}^{-5/2}} \sim O(1)$

•
$$X(3872)$$
 as 2^{-+} : $\alpha = 0.08$

Summary

Many new and interesting states in the charmonium "sector" that we do not understand

The exercise for theorists and experimentalists can only improve our understanding of QCD/spectra

- The new results from the b-side may help clarify things -- or not
 - LHC has now seen the X(3872) (Y. Gao)

Better mass determination on D's coming from CLEO -may clarify "binding" issue of X(3872)

Utilize polarization observables to probe X(3872) quantum numbers and "wavefunction" questions.

Additional Slides

Initial State Radiation $J^{PC} = 1^{--}$

(MeV)	Y(4660)	Y(4350)	Y(4260)
Mass	4664 ± 12	4361 ± 13	4263 ± 5
Width	48 ± 15	74 ± 18	108 ± 14
Mode	$\pi^+\pi^-\psi(2S)$	$\pi^+\pi^-\psi(2S)$	$\pi^+\pi^- J/\psi$

4360: BaBar 0610057 4260: BaBar 050608, 0808.1543; Cleo 06011021; Belle 0707.2541 4360,4660: Belle 0707.3699; Liu 0805.3560

MeV	$Z(4430)^+$	$Z_2(4250)^+$	$Z_1(4050)^+$
mass	4443_{-18}^{+24}	4248^{+185}_{-45}	4051^{+24}_{-23}
width	107^{+113}_{-71}	177^{+321}_{-72}	82^{+51}_{-55}
mode	$\pi^+\psi(2S)$	$\pi^+ \chi_{c1}(1P)$	$\pi^+ \chi_{c1}(1P)$

 $\underline{\text{cannot}}$ be $c\bar{c}$

quark quantum numbers : $\bar{c}c\bar{d}u$

Hadroncharmonium? Dubynskiy/Voloshin

X(3872) Properties (Braaten) Belle (2003): $B \rightarrow KX(3872)$ $X(3872) \to \pi^+\pi^- J/\psi$ angular distribution $\Rightarrow 1^{++}$ $X(3872) \rightarrow J/\psi\gamma \Rightarrow C = +$ $M_X = 3871.55 \pm 0.20 \text{ MeV}$ $\Gamma < 2.3 \text{ MeV}$ $M(X) - [M(D^{*0}) + M(D^{0})] = -0.26 \pm 0.41 \text{ MeV} \Rightarrow \text{S} - \text{wave}$ Threshold resonance universality (Braaten/Hammer) $r \sim 5 \text{ fm}$ $\frac{\text{Br}(X \to J/\psi \pi^+ \pi^- \pi^0)}{\text{Br}(X \to J/\psi \pi^+ \pi^-)} = 1.0 \pm 0.5$

Amplitudes

$$a) = -\frac{g_2 e \beta}{3} \frac{1}{E_{\gamma} + \Delta} (\vec{k} \cdot \vec{\epsilon}_{\psi}^* \vec{\epsilon}_{D^*} \cdot \vec{k} \times \vec{\epsilon}_{\gamma}^* - \vec{k} \cdot \vec{\epsilon}_{D^*} \vec{\epsilon}_{\psi}^* \cdot \vec{k} \times \vec{\epsilon}_{\gamma}^*)$$

$$b) = \frac{g_2 e \beta}{3} \frac{1}{\Delta - E_{\gamma}} \vec{k} \cdot \vec{\epsilon}_{\psi}^* \vec{\epsilon}_{D^*} \cdot \vec{k} \times \vec{\epsilon}_{\gamma}^*$$

$$c) = \frac{g_2 e \beta}{3} \frac{1}{E_{\gamma}} \vec{k} \cdot \vec{\epsilon}_{D^*} \vec{\epsilon}_{\psi}^* \cdot \vec{k} \times \vec{\epsilon}_{\gamma}^*$$

$$d) = -e c_1 E_{\gamma} \vec{\epsilon}_{D^*} \cdot \vec{\epsilon}_{\psi}^* \times \vec{\epsilon}_{\gamma}^*$$

$$|\mathcal{M}|^2 = g_2^2 \beta^2 F_1(\Delta, E_{\gamma}) + g_2 \beta c_1 F_2(\Delta, E_{\gamma}) + c_1^2 F_3(E_{\gamma})$$

 $|\mathcal{M}(\vec{\epsilon}_{\psi})|^{2} = \left(2g_{2}^{2}\beta^{2}A^{2}E_{\gamma}^{4} + 4g_{2}\beta c_{1}ACE_{\gamma}^{2} + 2c_{1}^{2}C^{2}\right)|\hat{k}\cdot\vec{\epsilon}_{\psi}|^{2} + \left(g_{2}^{2}\beta^{2}B^{2}E_{\gamma}^{4} - 2g_{2}\beta c_{1}BCE_{\gamma}^{2} + c_{1}^{2}C^{2}\right)|\hat{k}\times\vec{\epsilon}_{\psi}|^{2}$

 $\Delta \sim 142 \text{ MeV}; \quad E_{\gamma} \sim 181 \text{ MeV}$

 $\psi(4040) \to X(3872)\gamma$

$$E_{\gamma} \sim 165 \text{ MeV}$$

 $g_2 \to \tilde{g}_2; \quad c_1 \to \tilde{c}_1$

 $(g'_2)^2 < 0.63 \text{ GeV}^{-3}$ from width of $\psi(4040)$

 Γ to this channel ~ 10^{-5}

by using scattering length to get matrix element