The Theory of X, Y, and Z States

XIV International Conference on Hadron Spectroscopy
R.P. Springer, Munich, June 201I

Observed spectrum of states (above DD)
Examples from theory landscape
Effective field theory for the $X(3872)$
Selected $X(3872)$ predictions
Reviews: Brambilla et al. 1010.5827 ;Voloshin 071 I.4556;
(hadron I I: 9 talks on 3872; 6 on other X,Y,Z)

X,Y,Z states from Table 9, Brambilla et al. IOIO.5827

$Y(4360)$

$\underline{X(4350)}$
$\underline{Y(4008)}$

$\frac{X(4160)}{\overline{Y(4140)}} Z_{1}(4050)^{+}$

$\underline{X(3872)}$

DD(3730)
$J^{P C}$
1^{--}
$\left(1^{++}\right)$
$0 / 2^{++}$
$0 / 2^{?+}$
??+
?

Techniques/Descriptions/Strategies

QCD Sum Rules
Non-relativistic QCD
Heavy Quark Effective Theory
Heavy Hadron Chiral Perturbation Theory
X-EFT Lattice Potential Models
Mixtures
Molecule
Baryonium
Tetraquark
Hybrids
Coupled channels
Hadrocharmonium

Hadron 201I X,Y,Z Theory talks/posters (to see or to have seen)
F. De Fazio (Plenary II) EFT radiative decays X(3872)
C.Zanetti (Heavy Hadrons I) QCD Sum Rules X(3872)
H. Noya (Quarkonia I) Diquark Cluster model (4-q- states) $X(3940), X(4260), X(4350), X(4430), X(4660)$
R. Molina (Poster) dynamically generated Y(3940),Z(3930),X(4160)
D. Rodriquez Entem (Quarkonia 4) Molecules $X(3872), X(3915), X / Y(3940), Y(4008)$
M. Karliner (Heavy Hadrons 5) Tetraquarks $X(3872)$, etc.

Hadrocharmonium

$J / \psi, \psi(2 S), \ldots$ even Υ ? affinity for light hadronic matter

light (excited) hadronic matter

$$
\begin{aligned}
& Y^{\prime} \text { s are } 1^{--} \\
& \quad \text { widths }(\mathrm{MeV})
\end{aligned}
$$

$$
\begin{aligned}
& Z_{1}(4050)^{+} \rightarrow \pi^{+} \chi_{c 1}(1 P) \\
& Z_{2}(4250)^{+} \rightarrow \pi^{+} \chi_{c 1}(1 P) \\
& Y(4260) \rightarrow \pi \pi J / \psi \\
& Y(4360) \rightarrow \pi^{+} \pi^{-} \psi(2 S) \\
& Z(4430)^{+} \rightarrow \pi^{+} \psi(2 S) \\
& Y(4660) \rightarrow \pi^{+} \pi^{-} \psi(2 S)
\end{aligned}
$$

$$
82_{-55}^{+51}
$$

$$
177_{-72}^{+321}
$$

$$
108 \pm 14
$$

$$
96 \pm 42
$$

$$
107_{-71}^{+113}
$$

$$
48 \pm 15
$$

Y(4260): BaBar/Belle/Cleo; no D’s

- Charmonium Hybrid -- gluonic excitations Lattice; heavy quark symmetry; NRQCD Potential yields tower of excitations ${ }^{1}$
- Bound state or molecule (next slide)
-Tetraquark ${ }^{2,3} \quad[c s][\overline{c s}]$
- Hadrocharmonium (previous slide)
- QCDSR $^{3} \quad[c \bar{q}]_{1}[\bar{c} q]_{1} ;(S+V),(P+A)$
${ }^{1}$ Horn/Mandula; Hasenfratz/Horgan/Kuti/Richard; Juge/Kuti/
Morningstar; Bali/Pineda; Zhu; Kou/Pene; Close/Page
${ }^{2}$ Maiani/Riquer/Piccinini/Polosa

Molecules: do the constituents retain their identify as hadrons? (details in the $X(3872)$ section)
$X(3872)$
$X(3915)$
$Y(4140)$
$Y(4260)$
$Z(4430)^{+}$
$X(4630)$
$Y(4660)$

$$
\bar{D}^{0} D^{* 0}
$$

$$
\bar{D}^{* 0} D^{* 0}+D^{*+} D^{*-}
$$

$$
D_{s}^{*+} D_{s}^{*-}
$$

$$
D_{0} \bar{D}^{*}, \psi(2 S) f_{0}(980)
$$

$$
D^{*+} \bar{D}_{1}^{0}
$$

$$
\psi(2 S) f_{0}(980)
$$

$$
\psi(2 S) f_{0}(980)
$$

BGL
BGL
AN,TKGO
LMNN/BGL
GHHM
GHM

BGL=Branz,Gutsche,Lyubovitskij LMNN=Lee,Miharo,Navarro,Nielsen TKGO=Torres,Kehmchandari,Gamermann,Oset AN=Albuquerque,Nielsen GH(H)M=Guo,(Haidenbauer),Hanhart,Meissner
b Exotics above threshold - Belle

MeV	$Z_{b}(10610)$	$Z_{b}(10650)$	$Y_{b}(10888)$
mass	10608.1 ± 1.7	10653.3 ± 1.5	10888.4 ± 3.0
width	15.5 ± 2.4	14.0 ± 2.8	$30.7_{-7.7}^{+8.0}$
mode	$\Upsilon(n S) \pi^{+} \pi^{-}$ $n=1,2,3$ $h_{b}(m P) \pi^{+} \pi^{-}$ $m=1,2$	$\Upsilon(n S) \pi^{+} \pi^{-}$ $n=1,2$ $h_{b}(m P) \pi^{-}+\pi^{-}$ $m=1,2$	$\Upsilon(n S) \pi^{+} \pi^{-}$ $n=1,2,3$

Explanations:

$Y_{b}\left(1^{--}\right)$could be analog of $Y(4260)$
hybrid $b \bar{b} g$
disturbed $\Upsilon(5 S)$
$Z_{b}: I^{G}=1^{+} J^{P}=1^{+}$This conference: A.Kuzmin charged : cannot be $\bar{b} b$ alone
tetraquarks: Karliner/Lipkin prediction

$$
\Upsilon(n S) \rightarrow \pi^{ \pm} T_{b b}^{\mp} \rightarrow \Upsilon(m S) \pi^{-} \pi^{+}
$$

isovector charged tetraquark $\bar{b} b \bar{d} u \quad \bar{b} b \bar{u} d$
prediction: look for subthreshold $I=0$ state

Molecular overlap: Bugg

$\bar{B} B^{*}$ threshold $=10604.3 \pm 0.6 \mathrm{MeV}$

$$
\begin{gathered}
Z_{b}(10610) \text { analogous to } \mathrm{X}(3872) ? \\
\bar{B}^{*} B^{*} \text { threshold }=\bar{B} B^{*}+46 \mathrm{MeV} \\
Z_{b}(10650) \text { analogous to } \mathrm{X}(3915) ?
\end{gathered}
$$

hypothesis : each is $\overline{\mathrm{b}} \mathrm{b}+\overline{\mathrm{B}} \mathrm{B}^{(*)}$

Voloshin: more molecules from heavy quark spin symmetry; also predicts decay ratios

$$
\begin{gathered}
1^{-}\left(0^{+}\right)=\frac{1}{2} 0_{b \bar{b}}^{-} \times 0_{l t}^{-}-\frac{\sqrt{3}}{2}\left(1_{b \bar{b}}^{-} \otimes 1_{l t}^{-}\right)_{J=0} \\
Z_{b}=1^{+}\left(1^{+}\right)=\frac{1}{\sqrt{2}}\left(0_{b \bar{b}}^{-} \times 1_{l t}^{-}+1_{b \bar{b}}^{-} \otimes 0_{l t}^{-}\right) \\
Z_{b}^{\prime}=1^{+}\left(1^{+}\right)=\frac{1}{\sqrt{2}}\left(0_{b \bar{b}}^{-} \times 1_{l t}^{-}-1_{b \bar{b}}^{-} \otimes 0_{l t}^{-}\right) \\
1^{-}\left(0^{+}\right)=\frac{\sqrt{3}}{2} 0_{b \bar{b}}^{-} \times 0_{l t}^{-}+\frac{1}{2}\left(1_{b \bar{b}}^{-} \otimes 1_{l t}^{-}\right)_{J=0} \\
\rightarrow \eta_{b} \pi, \chi_{b} \pi, \Upsilon \rho
\end{gathered}
$$

X(3872): molecular state?

$$
\begin{aligned}
& \frac{1}{\sqrt{2}}\left(D^{0} \bar{D}^{0 *}+\bar{D}^{0} D^{0 *}\right) \quad \text { Isospin issue: } \\
& \frac{\Gamma\left[\rightarrow J / \psi \pi^{+} \pi^{-} \pi^{0}\right]}{\Gamma\left[\rightarrow J / \psi \pi^{+} \pi^{-}\right]}=1.0 \pm 0.4 \pm 0.3 \quad \text { Belle } 2005 \\
& \frac{\Gamma[\rightarrow J / \psi \omega]}{\Gamma\left[\rightarrow J / \psi \pi^{+} \pi^{-}\right]}=0.8 \pm 0.3 \quad \text { BaBar } 2010 \\
& \quad J^{P C}=1^{++} \text {or } 2^{-+} \quad \text { multipole question } \\
& m_{D^{0} \bar{D}^{0 *}}-m_{X(3872)}=0.42 \pm 0.39 \mathrm{MeV} \quad \text { S-wave }
\end{aligned}
$$

X-Effective Field Theory: Fleming, Kusunoki, Mehen, van Kolck

Factorization theorems: Braaten/Kusunoki/Lu

$$
\begin{aligned}
&\text { Rate } \left.=\frac{1}{3} \sum_{\lambda}\left|\langle 0| \frac{1}{\sqrt{2}} \epsilon_{i}(\lambda)\left(V^{i} \bar{P}+\bar{V}^{i} P\right)\right| X(3872, \lambda)\right\rangle\left.\right|^{2} \\
& \times(\text { phase space }) \times\left|\mathcal{C}\left(\bar{D} D^{*} \rightarrow f\right)\right|^{2}
\end{aligned}
$$

Universal shallow-bound-state properties from effective range theory: Braaten/Voloshin...

$$
\psi_{D D^{*}}(r) \propto \frac{e^{-\gamma r}}{r} \quad B=\frac{1}{2 \mu_{D^{*} D} a^{2}} \quad \begin{aligned}
\gamma & \sim 20 \mathrm{MeV} \\
a & \sim 7 \mathrm{fm} \\
\langle r\rangle & \sim 5 \mathrm{fm}
\end{aligned}
$$

Compare Systematic NN treatment: NN-EFT (no pions)

$A=\frac{4 \pi}{M}\left[-a+i a^{2} p+\frac{1}{2}\left(a^{3}-a^{2} r_{0}\right) p^{2}+\cdots\right]$

$$
a^{\left({ }^{1} S_{0}\right)} \sim-\frac{1}{8 \mathrm{MeV}}
$$

$$
a^{\left({ }^{3} S_{1}\right)} \sim \frac{1}{36 \mathrm{MeV}}
$$

Both S-wave scattering lengths anomalously large => momentum expansion fails => reorganize to treat C's nonperturbatively

$$
A=-\frac{4 \pi}{M} \frac{1}{1 / a+i p}+\cdots
$$

with effective range: $\quad A=-\frac{4 \pi}{M} \frac{1}{1 / a-\frac{1}{2} r p^{2}+i p}+\cdots$
EM effects easily included

$$
\begin{gathered}
\text { IF } X(3872) \sim \frac{1}{\sqrt{2}}\left(D^{0} \bar{D}^{* 0}+D^{* 0} \bar{D}^{0}\right) \\
m_{X}=(3871.55 \pm 0.20) \mathrm{Mev} E_{X}=(-0.26 \pm 0.41) \mathrm{MeV} \\
a^{-1} \sim \sqrt{2 \mu_{X} B_{X}} \\
\mathcal{L}=\sum_{\substack{j=D^{0}, D^{* 0}, \bar{D}^{0}, \bar{D}^{* 0}}} \psi_{j}^{\dagger}\left(i \partial_{t}+\frac{\nabla^{2}}{2 m_{j}}\right) \psi_{j}+\Delta X^{\dagger}\left(X^{\dagger}\left(\psi_{D^{0}} \psi_{\bar{D}^{* 0}}+\psi_{D^{* 0}} \psi_{\bar{D}^{0}}\right)+\text { h.c. }\right)+\cdots \\
\text { Integral equation: }
\end{gathered}
$$

Results depend only on scattering length

$$
a_{D^{0} X}=-9.7 a \quad a_{D^{* 0} X}=-16.6 a
$$

Three body cross section vs scattering length

LHC possibilities: $\quad B_{c} \sim 10^{7}$ per week
$B \bar{B}$ final state interactions
$\sigma(b \bar{b}) \sim 0.4 \mathrm{mb}$
$\sigma(b \bar{b} b \bar{b}) \sim 5 \mathrm{fb}$
$X(3872) \rightarrow \psi(2 S) \gamma \quad$ factorization Mehen/RPS

$$
\begin{gathered}
\beta^{-1} \sim 356 \mathrm{MeV} \\
\mathrm{Hu}, \text { Mehen }
\end{gathered}
$$

$g_{2} \sim 0.81 \mathrm{GeV}^{-3 / 2}$
Guo et al., 0907.0521

XEFT + HBChPT

$\mathcal{L}=\frac{e \beta}{2} \operatorname{Tr}\left[H_{1}^{\dagger} H_{1} \vec{\sigma} \cdot \vec{B} Q_{11}\right]+c . c .+i \frac{g_{2}}{2} \operatorname{Tr}\left[J^{\dagger} H_{1} \vec{\sigma} \cdot \stackrel{\leftrightarrow}{\partial} \bar{H}_{1}\right]+$ h.c.

$$
\begin{aligned}
+i \frac{e c_{1}}{2} \operatorname{Tr}\left[J^{\dagger} H_{1} \vec{\sigma} \cdot \vec{E} \bar{H}_{1}\right]+h . c . \quad & J=\left(\eta_{c}(2 S), \psi(2 S)\right) \\
H_{a} & \sim\left(D_{a}, D_{a}^{*}\right) ; a=1,2,3
\end{aligned}
$$

$$
\frac{\Gamma(X(3872) \rightarrow \psi(2 S) \gamma)}{\Gamma_{t o t}}>0.03(\text { BaBar, PDG })
$$

- Polarization $\psi(2 S) \rightarrow \ell^{+} \ell^{-} \frac{d \Gamma}{d \cos \theta} \propto 1+\alpha \cos ^{2} \theta \quad \alpha=\frac{1-3 f_{L}}{1+f_{L}}$

contact interaction
i) $g_{2} \beta \ll c_{1}$ d) only

$$
f_{L}=\frac{1}{2} \alpha=-\frac{1}{3}
$$

$$
\mathcal{M} \propto \vec{\epsilon}_{X} \cdot \vec{\epsilon}_{\psi}^{*} \times \vec{\epsilon}_{\gamma}^{*}
$$

constituent decay
ii) $\left.g_{2} \beta \gg c_{1} \quad \mathrm{a}-\mathrm{c}\right)$ only b) dominate

$$
\begin{gathered}
f_{L}=\frac{4 E_{\gamma}^{4}}{4 E_{\gamma}^{4}+\left(2 E_{\gamma}+\Delta\right)^{2}\left(E_{\gamma}-\Delta\right)^{2}}=0.92 \\
\alpha=-0.91
\end{gathered}
$$

Polarization measurement would shed light on relative importance of decay mechanisms

- Polarization as function of $\lambda \equiv \frac{3 c_{1}}{g_{2} \beta} \approx 1.3 \frac{c_{1}}{\mathrm{GeV}^{-5 / 2}} \sim O(1)$

- Longitudinal Polarization $(\alpha<-0.5)$ for $-3.5 \leq \lambda \leq 5$

○ $X(3872)$ as $2^{-+}: \alpha=0.08$

- $e^{+} e^{-} \rightarrow \psi(4040) \rightarrow X(3872) \gamma \quad($ BES? $)$
$\psi(4040)$ produced with polarization transverse to beam axis (LO) same (crossed) graphs as $X(3872) \rightarrow \psi(2 S) \gamma$

- $J^{P C}=2^{-+} \quad$ predicts $\rho=0.08$
molecule predicts $\rho \approx-1 / 3$ for most of parameter space

Summary

Many new and interesting states in the charmonium "sector" that we do not understand

The exercise for theorists and experimentalists can only improve our understanding of QCD/spectra

The new results from the b-side may help clarify things -- or not

LHC has now seen the X (3872) (Y. Gao)
Better mass determination on D's coming from CLEO -may clarify "binding" issue of $X(3872)$

Utilize polarization observables to probe $\mathrm{X}(3872)$ quantum numbers and "wavefunction" questions.

Additional Slides

Initial State Radiation $\quad J^{P C}=1^{--}$

(MeV)	$\mathrm{Y}(4660)$	$\mathrm{Y}(4350)$	$\mathrm{Y}(4260)$
Mass	4664 ± 12	4361 ± 13	4263 ± 5
Width	48 ± 15	74 ± 18	108 ± 14
Mode	$\pi^{+} \pi^{-} \psi(2 S)$	$\pi^{+} \pi^{-} \psi(2 S)$	$\pi^{+} \pi^{-} J / \psi$

4360: BaBar 06I0057
4260: BaBar 050608, 0808.1543; Cleo
060II 02 I; Belle 0707.254I
4360,4660: Belle 0707.3699; Liu 0805.3560

MeV	$Z(4430)^{+}$	$Z_{2}(4250)^{+}$	$Z_{1}(4050)^{+}$
mass	4443_{-18}^{+24}	4248_{-45}^{+185}	4051_{-23}^{+24}
width	107_{-71}^{+113}	177_{-72}^{+321}	82_{-55}^{+51}
mode	$\pi^{+} \psi(2 S)$	$\pi^{+} \chi_{c 1}(1 P)$	$\pi^{+} \chi_{c 1}(1 P)$

cannot be $c \bar{c}$
quark quantum numbers : $\bar{c} c \bar{d} u$
Hadroncharmonium? Dubynskiy/Voloshin

Charmonium

$c \bar{c}$

$$
\frac{\psi(4040)}{Z(3930)} \quad \frac{Y(3940)}{X(3940)}
$$

$$
\begin{aligned}
& X(3872) \\
& D \stackrel{-1370)}{D(3730)} \\
& \frac{\eta_{c}^{\prime}\left(2^{1} S_{0}\right)}{3640} \frac{h_{c}\left(1^{1} P_{1}\right)}{3520} \\
& \underline{\chi\left(1^{3} P_{0}\right)} \stackrel{\chi\left(1^{3} P_{1}\right)}{\underline{\chi\left(1^{3} P_{2}\right)}} \\
& \frac{\eta_{c}\left(1^{1} S_{0}\right)}{2980} \quad \frac{J / \psi\left(1^{3} S_{0}\right)}{3100} \\
& \begin{array}{lllllll}
J^{P C} & 0^{-+} & 1^{+-} & 1^{--} & 0^{++} & 1^{++} & 2^{++}
\end{array}
\end{aligned}
$$

X(3872) Properties (Braaten)

$$
\begin{aligned}
& \text { Belle }(2003): B \rightarrow K X(3872) \\
& \quad X(3872) \rightarrow \pi^{+} \pi^{-} J / \psi \\
& \quad \text { angular distribution } \Rightarrow 1^{++} \\
& \quad X(3872) \rightarrow J / \psi \gamma \Rightarrow C=+ \\
& M_{X}=3871.55 \pm 0.20 \mathrm{MeV} \quad \Gamma<2.3 \mathrm{MeV} \\
& M(X)-\left[M\left(D^{* 0}\right)+M\left(D^{0}\right)\right]=-0.26 \pm 0.41 \mathrm{MeV} \Rightarrow \mathrm{~S} \text { - wave }
\end{aligned}
$$

Threshold resonance universality (Braaten/Hammer) $r \sim 5 \mathrm{fm}$

$$
\frac{\operatorname{Br}\left(X \rightarrow J / \psi \pi^{+} \pi^{-} \pi^{0}\right)}{\operatorname{Br}\left(X \rightarrow J / \psi \pi^{+} \pi^{-}\right)}=1.0 \pm 0.5
$$

Amplitudes

$$
\begin{aligned}
&a)=-\frac{g_{2} e \beta}{3} \frac{1}{E_{\gamma}+\Delta}\left(\vec{k} \cdot \vec{\epsilon}_{\psi}^{*} \vec{\epsilon}_{D^{*}} \cdot \vec{k} \times \vec{\epsilon}_{\gamma}^{*}-\vec{k} \cdot \vec{\epsilon}_{D^{*}} \vec{\epsilon}_{\psi}^{*} \cdot \vec{k} \times \vec{\epsilon}_{\gamma}^{*}\right) \\
&b)= \frac{g_{2} e \beta}{3} \frac{1}{\Delta-E_{\gamma}} \vec{k} \cdot \vec{\epsilon}_{\psi}^{*} \vec{\epsilon}_{D^{*}} \cdot \vec{k} \times \vec{\epsilon}_{\gamma}^{*} \\
&c)= \frac{g_{2} e \beta}{3} \frac{1}{E_{\gamma}} \vec{k} \cdot \vec{\epsilon}_{D^{\prime}} \cdot \vec{\epsilon}_{\psi}^{*} \cdot \vec{k} \times \vec{\epsilon}_{\gamma}^{*} \\
&d)=-e c_{1} E_{\gamma} \vec{\epsilon}_{D^{*}} \cdot \vec{\epsilon}_{\psi}^{*} \times \vec{\epsilon}_{\gamma}^{*} \\
&|\mathcal{M}|^{2}= g_{2}^{2} \beta^{2} F_{1}\left(\Delta, E_{\gamma}\right)+g_{2} \beta c_{1} F_{2}\left(\Delta, E_{\gamma}\right)+c_{1}^{2} F_{3}\left(E_{\gamma}\right) \\
&\left|\mathcal{M}\left(\vec{\epsilon}_{\psi}\right)\right|^{2}=\left(2 g_{2}^{2} \beta^{2} A^{2} E_{\gamma}^{4}+4 g_{2} \beta c_{1} A C E_{\gamma}^{2}+2 c_{1}^{2} C^{2}\right)\left|\hat{k} \cdot \vec{\epsilon}_{\psi}\right|^{2} \\
& \quad+\left(g_{2}^{2} \beta^{2} B^{2} E_{\gamma}^{4}-2 g_{2} \beta c_{1} B C E_{\gamma}^{2}+c_{1}^{2} C^{2}\right)\left|\hat{k} \times \vec{\epsilon}_{\psi}\right|^{2} \\
& \quad \Delta \sim 142 \mathrm{MeV} ; \quad E_{\gamma} \sim 181 \mathrm{MeV}
\end{aligned}
$$

$$
\psi(4040) \rightarrow X(3872) \gamma
$$

$$
E_{\gamma} \sim 165 \mathrm{MeV}
$$

$g_{2} \rightarrow \tilde{g}_{2} ; \quad c_{1} \rightarrow \tilde{c}_{1}$
$\left(g_{2}^{\prime}\right)^{2}<0.63 \mathrm{GeV}^{-3} \quad$ from width of $\psi(4040)$
Γ to this channel $\sim 10^{-5}$
by using scattering length to get matrix element

