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Topics to Cover	
• Baryon/Meson Form Factors

• Provide information of size, shape and internal (charge) densities

• e.g. Neutron has charge zero, but charge density +/-?

• Good place to search for chiral non-analytic behaviour

• Nucleon Axial Charge

• Neutron beta decay, chiral symmetry breaking

• Study finite size effects

• Quark Momentum Fraction

• Will it ever bend down?

• (g-2)mu

• Hadronic (vacuum polarisation) contribution 

�x�



Motivation:

R⊥

b⊥

Pz

Quark (charge) distribution in transverse plane

Distance of (active) quark to the centre of 
momentum in a fast moving nucleon

q(b2
⊥) =

�
d2q⊥ e−i�b⊥·q⊥F1(q2)

Provide information on the size and 
internal charge densities

�p�, s�|Jµ(�q)|p, s� = ū(p�, s�)
�
γµF1(q2) + iσµν qν

2m
F2(q2)

�
u(p, s)

Electromagnetic Form Factors



Scaling of Form Factors

 for

F1 ∝ 1
Q4

(dipole?)

F2 ∝ 1
Q6

(tripole?)
Q2 > ζpQCD

From dimensional counting [Brodsky & Farrar, 1973] F (0)
(1 + Q2/M2)p
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•              discrepancy between 
muonic hydrogen and e-p scattering

• rp=0.84184(67) fm

• rp=0.875(8)(6) fm

Size of the Proton

> 5σ

[arXiv:1102.0318]

[Nature 466, 213 (2010]



Form Factor Radii & Magnetic Moments

Search for non-analytic behaviour predicted by Chiral 
Perturbation Theory

✤  Form factor radii:

✤  Magnetic moment      /anomalous magnetic momentµ κ
µ = 1 + κ = Gm(0)

r2
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dq2
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Form Factor Radii & Magnetic Moments

Search for non-analytic behaviour predicted by Chiral 
Perturbation Theory

✤  Form factor radii:

✤  Magnetic moment      /anomalous magnetic momentµ κ
µ = 1 + κ = Gm(0)
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The Lattice



The Lattice

✤ Discretise space-time with lattice 
spacing a volume L3xT

✤ Quark fields reside on sites

✤ Gauge fields on the links

✤ Lattice simulations for QCD give first principle results
✤ but need to have control of:                                                           ‘Goal’

✤ Statistical errors, 
✤ Volume:
✤ Continuum limit:
✤ Chiral extrapolation:

✤ difficult, need Tflop++ machines to approach the theoretical goal

Nconf ∼ O(1000)

a ∼ 0.1 fm→ 0.04 fm

mπ ∼ 500 MeV→ 200 MeV

Nconf →∞

L→∞

a→ 0

mπ → 140 MeV

ν̂

µ̂

Uµ(x)ψ(x) ψ(x + aµ̂)

}

{

a

L=Na

L ∼ 2 fm→ 4 fm



Nucleon Mass
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Lattice Form Factors

[QCDSF arXiv:1106.XXXX]
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Comparison With Experiment
0.8GeV�mΠ�0.4GeV
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Comparison With Experiment
0.8GeV�mΠ�0.4GeV
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Form Factor Radii
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Isovector

• Radii suppressed at large masses 
and small volumes

• Hint of sharp rise at small masses

• r2 approaching experimental result
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Form Factor Radii
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• r1 shows clear curvature at small 
masses

• favour a small but negative value 
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Anomalous 
Magnetic Moment

•             shows clear curvature at 
small masses

• favour a small but negative value 
for              in agreement with exp
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• Systematics of our simulations 
appear to be under control

• Remaining discrepancy must come 
from unphysical quark masses

• Contact with ChPT?

Quark Mass Dependence
	 	 Contact with ChPT?

• Popular expressions from Phys. Rev. D71, 034508 (2005)  (SSE)

• But are they valid up to                                               ?

• Our method: Vary unknown parameters over a “reasonable” range and 
extrapolate up from the chiral limit with the only constraint provided by the 
experimental point

mπ < 300 MeV
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Dirac Radius
• Rapidly decreasing isovector Dirac ms radius as pion mass increases

• Overlap with the lattice data points at mπ ≈ 250 . . . 300 MeV

• Similar observations for Pauli radius and anomalous magnetic moment
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gA



• Governs neutron ß decay

• Measure of spontaneous chiral symmetry 
breaking

• Related to 1st moment of helicity- 
dependent quark distribution functions

• Lattice calculations:

• benchmark calculation

• zero momentum, isovector

• Known to suffer from large finite size 
effects

• What size lattice is needed at low mπ?

Axial Charge, gA

gA = ∆u−∆d

• Increased interest from several 
lattice collaborations

• QCDSF

• LHPC

• RBC/UKQCD

• ETMC

• CLS/Mainz
arXiv:1106.1554 [hep-lat]

PRD 74, 094508 (2006)

PRL 96, 052001 (2006)

PRL 100, 171602 (2008)

PRD 83, 045010 (2011)
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FIG. 3: Nucleon mass in units of r0 at three lattice spacings
and spatial lattice size L such that mπL > 3.3. The solid
(black) and dashed (red) lines are fits to O(p3) and O(p4)
HBχPT. The physical point is shown with the asterisks. Re-
sults at β = 3.9 and 243 × 48 are shown with filled (red)
circles, at β = 3.9 and 323 × 64 with the filled (blue) squares,
at β = 4.05 and 323 × 64 with the filled (green) triangles, at
β = 4.2 and 323 × 64 with the open (yellow) square and at
β = 4.2 and 483 × 96 with the star (magenta).

and O(p4) mean values as an estimate of the uncertainty
due to the chiral extrapolation. Fits to other higher
order χPT formulae are also shown in Fig. 3. These
are described in Ref. [13] and are consistent with O(p4)
HBχPT. Using r0=0.462(5)(27) and the computed r0/a
ratios we obtain

aβ=3.9 = 0.089(1)(5) ,

aβ=4.05 = 0.070(1)(4) ,

aβ=4.2 = 0.056(2)(3) .

These values are consistent with the lattice spacings de-
termined from fπ and will be used for converting to phys-
ical units in what follows. We note that results on the nu-
cleon mass using twisted mass fermions agree with those
obtained using other lattice O(a2) formulations for lat-
tice spacings below 0.1 fm [11].

III. RESULTS

In the first subsection we discuss our results on the nu-
cleon axial charge and in the second subsection we discuss
the momentum dependence of the axial GA(Q2) and the
induced pseudo-scalar Gp(Q2).

A. Axial charge

Our lattice results on the nucleon axial charge are
shown in Fig. 4 and listed in Table III. In the same
figure we also show results obtained using NF = 2 + 1

FIG. 4: The nucleon axial charge. Results using NF = 2
twisted mass fermions are shown using the same notation as
that of Fig. 3. Crosses show results obtained using NF = 2+1
DWF, circles are results in a mixed action approach on a
lattice of size 203 × 64 and the triangle on a lattice of size
283 × 64.

domain wall fermions (DWF) by the RBC-UKQCD col-
laborations [30] and using a mixed action with 2+1 fla-
vors of asqtad sea and domain wall valence fermions by
LHPC [31]. The first observation is that results at our
three different lattice spacings are within error bars. The
second observation is that results at two different volumes
are also consistent. The third observation is that there
is agreement among lattice results using different lattice
actions even before taking the continuum and infinite vol-
ume limit.

mπ Lmπ gA gA(L → ∞)

β = 3.9

0.4675 5.04 1.163(18) 1.167

0.4319 4.66 1.134(25) 1.140

0.3770 4.06 1.140(27) 1.150

0.3032 3.27 1.111(34) 1.133

0.2978 4.28 1.103(32) 1.106

0.2600 3.74 1.156(47) 1.162

β = 4.05

0.4653 5.28 1.173(24) 1.177

0.4035 4.58 1.175(31) 1.182

0.2925 3.32 1.194(66) 1.218

β = 4.2

0.4698 4.24 1.130(26) 1.144

0.2622 3.55 1.138(43) 1.146

TABLE III: Results using NF = 2 twisted mass fermions
(TMF) on the axial nucleon charge. The last column gives
the values after a volume correction.
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Fig. 10. The ratio R(t, ts) of the iso-vector axial charge computed for three different values
of ts at β = 5.3 (a ≈ 0.07 fm). The purple band denotes the result extracted from the slope
of the summed correlator.

Fig. 11. The axial charge gA determined using summed correlators plotted versus the pion
mass squared. The magenta star represents the PDG value of gA = 1.2695(29).

The size of the corrections in the standard approach also depends on the spatial extent
L of the lattice, since the overlap of a local interpolating field with a multi-particle
state is suppressed by powers of the volume. In the conventional approach it is then
difficult to disentangle finite-volume effects from excited states contaminations. A
slight drawback of the method can be read off from Fig. 10: Excited state contributions
to the summed correlator are reduced at the expense of incurring larger statistical
errors.

ETMC/LHPC

QCDSF

gA

CLS/Mainz

*

*
*

• Lattice results for gA are systematically 
low, even at small quark masses

• Systematic errors?



gAExcited State 
Contamination?

CLS/Mainz
arXiv:1106.1554 [hep-lat]
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• Lattice correlation functions overlap with 
ground + excited states of, eg. proton

• Ground state isolated at large Euclidean 
times

• Lattice 3-point functions used a fixed sink

• Residual excited state contamination?
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• First moment of the (isovector) nucleon parton distribution function

• Notorious for producing lattice results ≈ 2x too large for isovector nucleon

• What are the possible systematic errors that could account for this

• Quenching? Chiral physics? Finite volume effects?

�x�u−d
µ =

� 1

0
dx x(u(x, µ) − d(x, µ)) +

� 1

0
dx x(ū(x, µ) − d̄(x, µ))

hep-lat/0310003 [Detmold, Melnitchouk, Thomas]
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FIG. 2. Effective mass of the nucleon correlation function
with Gaussian smearing applied at both source and sink, for
quark mass mf = 0.005.

can choose without losing the signal. As will be shown in
detail in this paper, the bare three-point function signals
for this source-sink separation of t = 12 are acceptable.
We note that recently the LHP Collaboration has also
looked at this issue in some detail [42] and ends up using
a shorter separation of about 1.2 fm.

For low energy quantities like the pseudoscalar de-
cay constants, the kaon B-parameter, and the Ω baryon
mass, the effect of non-zero lattice spacing was estimated
to be less than 4% for the configuration ensemble used
in this work [1], and subsequently confirmed on a later
ensemble with smaller lattice spacing [43, 44]. We ex-
pect that similar errors hold for the quantities discussed
in this paper.

IV. NUMERICAL RESULTS

A. Quark momentum and helicity fractions

Let us first discuss the ratio, �x�u−d/�x�∆u−∆d, of the
isovector quark momentum fraction to the helicity frac-
tion. The momentum fraction, �x�u−d, which is the first
moment of the F1,2 unpolarized structure functions, and
the helicity fraction, �x�∆u−∆d, which is the first moment
of the g1 polarized structure function, share a common
renormalization because they are related by a chiral ro-
tation and the DWF action preserves chiral symmetry to
a high degree. Thus, this ratio calculated on the lattice is
naturally renormalized, much like the form factor ratio
[27], gA/gV , and is directly comparable with the value
obtained from experiment.

The results of our calculation are shown in Fig. 3.
They do not show any discernible dependence on the
up/down quark mass, outside of the statistical error bars,
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〈x〉
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〈x〉
∆u-∆d
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FIG. 3. Ratio of the bare, isovector, momentum and helicity
fractions, �x�u−d/�x�∆u−∆d, which is naturally renormalized
for DWF. Both volumes are shown, (2.7 fm)3 (circles) and
(1.8 fm)3 (squares). The square symbols have been moved
slightly in the plus x-direction. They are in good agreement
with experiment which is denoted by the star. No discernible
dependence on volume nor pion mass can be detected.

and are in good agreement with experiment. This is
in contrast to the renormalized ratio of gA/gV of elas-
tic form factors which at the lightest point deviates sig-
nificantly from heavier mass results and the experiment
as a result of a large finite-size effect [27]. This sug-
gests the moments of inelastic structure functions such
as the momentum fraction, �x�u−d, and helicity fraction,
�x�∆u−∆d, may not suffer so severely from the finite-size
effect that plagues elastic form factor calculations. In-
deed the results obtained from the smaller (1.8 fm)3 vol-
ume, also shown in Fig. 3, do not deviate significantly
from the constant behavior of the larger volume results,
albeit with larger statistical errors.
Next we discuss the absolute values of the isovector

quark momentum fraction, �x�u−d. This is the first mo-
ment of the unpolarized structure functions, F1 and F2.
In Fig. 4, we show the bare lattice matrix elements as
ratios of three- and two-point functions for the two light-
est quark mass values of mf = 0.005 (circles) and 0.01
(squares). We extract bare values of the desired matrix
element by averaging over time slices 4 to 8 (values are
summarized in Tables IV and V).
These bare values need be renormalized in order to

be compared with experiment. In Fig. 5 we present
the non-perturbatively determined renormalization for
the operator Oq

44. The filled circles are the renormaliza-
tion constants in the RI-MOM scheme at scale µ2 = p2,
which is not scale independent. The filled squares corre-
spond to the renormalisation constant given in the MS
scheme at µ = 2 GeV, where there remains only residual
scale dependence proportional to (ap)2 lattice artifacts.
After removing the remaining (ap)2 dependence as de-

RBC/UKQCD PRD 82, 014501 (2010)

• However ratios of lattice results again look good, e.g.



Pion Form Factor



• Asymptotic normalisation known from                          decay

• Allows to study the transition from the soft to hard regimes

• Low Q2: measured directly by scattering high energy pions from atomic electrons

• High Q2: quasi-elastic scattering off virtual pions

Pion Form Factor

π → µ + ν

Fπ(Q2 →∞) =
16παs(Q2)f2

π

Q2

rπ = 0.657± 0.006 fm

π

π∗

γ∗

Fπ(Q2)

p n

Model dependence



• CLS/Mainz   

• ETMC

• JLQCD

• PACS/CS

• QCDSF

• RBC/UKQCD

• Under investigation by several lattice collaborations

Pion Form Factor
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• On a periodic lattice with spatial 
volume L3, momenta are discretised 
in units of
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• On a periodic lattice with spatial 
volume L3, momenta are discretised 
in units of

• Modify boundary conditions on the 
valence quarks 

• allows to tune momenta 
continuously

• Introduces additional (small) finite 
volume effect
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Accessing small Q2

2π/L

ψ(xk + L) = eiθkψ(xk), (k = 1, 2, 3)

�pFT + �θ/L

∼ e−mπL
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Kl3 and pion form factors
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Figure 2: f !!(q2) from a 243×64 lattice with m! = 330 MeV using partially twisted bc’s.

On the right of Fig. 2 we have a zoom into the low Q2 = −q2 region. The triangles are our
lattice data points for a pion with m! = 330MeV, and the magenta diamonds are experimental data
points for the physical pion.

Because our values of Q2 are very small, we apply NLO chiral perturbation theory (ChPT).
In NLO ChPT, the pion form factor depends only on a single low energy constant (LEC) (Lr9 for
SU(3), or lr6 for SU(2))

f !!SU(2),NLO(q2) = 1+
1
f 2

[

−2lr6 q2+4H̃ (m2! ,q2,µ2)
]

(4.1)

f !!SU(3),NLO(q2) = 1+
1
f 20

[

4Lr9 q2+4H̃ (m2! ,q2,µ2)+2H̃ (m2K ,q2,µ2)
]

(4.2)

where

H̃ (m2,q2,µ2) =
m2H(q2/m2)

32!2
−

q2

192!2
log m

2

µ2
(4.3)

and

H(x) ≡−
4
3

+
5
18
x−

(x−4)
6

√

x−4
x
log

(

√

(x−4)/x +1
√

(x−4)/x −1

)

(4.4)

with H(x) = −x/6+O(x3/2) for small x. Provided our pion mass is light enough, we can use the
q2 dependence of f !!(q2) to extract this LEC. The grey dashed curve on the right hand of Fig. 2
shows our SU(2) fit to the m! = 330MeV pion form factor data.

Once the LEC is determined from this fit, we insert the physical pion mass in (4.1) to obtain
the solid blue curve. In addition we also represent the PDG world average [2] for the charge radius
using the black dashed line. Our best estimate for the pion charge radius comes from the SU(2)
NLO ChPT fit to the three lowest Q2 points and is

〈r2!〉 = 0.418(31) fm2 . (4.5)

The fact that our result is in agreement with experiment, 〈r2!〉 = 0.452(11) fm2 [2], gives us confi-
dence that we are in a regime where chiral perturbation theory is applicable.

5
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 : N3
 : N4
 : N5
 : F6
 : UKQCD, 330 MeV, 0.1 fm
 : ETMC, 260 MeV, 0.09 fm

Fig. 5. Left: pion form factor computed for a range of pion masses compared to the results
of [45,46]. Right: data points from the inset in the top left-hand corner.

where ê(k) denotes a unit vector in the kth spatial direction, and θ(k) is the corre-

sponding phase angle. A non-zero value of the latter modifies the accessible values of

the spatial momentum according to

p = n
2π

L
+

θ

L
. (7)

Quark propagators computed for different values of the twist angles can be combined

to form the three-point correlation functions from which the pion form factor can be

determined (see Fig. 4). The twist angles for the initial and final state pions are then

given by [43]

θi = θ1 − θ3, θf = θ2 − θ3, (8)

so that the expression for the squared momentum transfer becomes

−Q2 ≡ q2 = (pf − pi)
2
=

�
Eπ(pf )− Eπ(pi)

�2
−

��
pf +

θf

L

�
−

�
pi +

θi

L

��2
. (9)

Thus, by an appropriate choice of twist angles one can tune q2 to any desired value. In

our simulations we have chosen θi, θf so as to achieve a particularly fine momentum

resolution near q2 = 0.

So far we have assumed that boundary conditions are identical for sea and va-

lence quarks. It is, however, customary to apply partially twisted boundary condi-

tions, where the twist is applied only to the quark fields in the valence sector. This

has the advantage that the generation of Monte Carlo ensembles must be performed

only once (e.g. for zero twist), while the choice of twist angle and, in turn, the mo-

mentum transfer can be optimised for a particular observable. The modification of

the boundary conditions can lead to finite-size effects associated with the breaking

of flavour symmetries. However, it was shown in ref. [44] that such finite-size effects
are exponentially suppressed in processes without final-state interactions. Hence, for

the electromagnetic interaction between a photon and a pion finite-size effects are

expected to be small.

In Fig. 5 we show our results for the pion form factor computed on the ensembles

N3, N4, N5 and F6. There are two main observations: First, there is a clear trend

towards a steeper fall-off with q2 = −Q2
as the pion mass decreases from about

600MeV on N3 to about 290MeV on F6. Secondly, by our choice of twist angles

we were able to produce a very dense set of points near q2 = 0. This allows us to

extract the pion’s charge radius in an accurate and model-independent fashion, by

Brandt et al., arXiv:1106.1554 [hep-lat]

8 Will be inserted by the editor
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Fig. 6. The squared pion charge radius (in units of r0) extracted from the linear slope of
the form factor in an interval [0, (qr0)

2], plotted versus the interval length. The meaning of
the labels is given in Table 1.

Fig. 7. The squared pion charge radius as a function of the squared pion mass. The black
open and solid symbols are taken from ref. [45]. The value from the Particle Data Book is
indicated by the pink star. All dimensionful quantities are expressed in units of the hadronic
radius r0. To locate the positions of the pion masses in physical units we have set r0 = 0.5 fm.

determining the linear slope of fπ(q2) over a narrow interval, starting at q2 = 0.

For the following discussion we express all dimensionful quantities in units of the

hadronic radius r0 [47,48]. In Fig. 6 the values of �r2π�/r20 are plotted versus the length

of the interval in (qr0)2 over which the slope was determined. Obviously one would

like to choose this interval as small as possible. The figure shows that the statistical

accuracy in the determination of �r2π�/r20 is still very good in the immediate vicinity

of vanishing momentum transfer. The fact that the resulting estimates of �r2π� are

B. Brandt  16:50



aµ =
(g − 2)µ

2



Muon Anomalous Magnetic Moment
• Describes contribution from quantum effects to the magnetic moment

• Provides a precision test of the Standard Model

• Studied experimentally > 50 years and now achieving 0.5ppm precision

• Standard Model contributions

• QED

• Weak

• QCD

• Sensitive to physics Beyond the Standard Model

• Theory - Experiment differ by

• Dominant source of error from the hadronic (QCD) contribution 

non-perturbative [exp: e+e- annihilation, 
hadronic tau decays]

3.2σ

} perturbation theory



Muon Anomalous Magnetic Moment
• Hadronic (QCD) contribution are of two types

• Vacuum polarisation

• Early lattice work:  Blum, PRL 91, 052001 (2003), Göckeler et al., NPB 688, 135 (2004)

• A lot of recent attention ETMC, Mainz, RBC/UKQCD

• Light-by-light scattering

• A challenge on the lattice (4 point function)

• Two groups currently investigating (T. Blum et al., P. Rakow et al.)

• No definite results (Hadron 2013?)



• Hadronic vacuum polarisation

where

is the (infrared-subtracted) vacuum 
polarisation amplitude

Muon Anomalous Magnetic Moment

q, µ

p p�

= −ieΓµ(p�, p) ≡ −ie

�
F1(q

2) +
iσµνqν

2m
F2(q

2)

�
. (2.3)

From the Born approximation it can be seen that F1(0) = 1 to all orders, and so

a =
g − 2

2
= F2(0). (2.4)

We seek to compute the effect of hadronic vacuum polarisation contributions to aµ which
are obtained by calculating contributions to the graph in (2.3) of the form

q, µ

p p�
had

. (2.5)

As described in [8] the contribution to aµ from the one-loop diagram equivalent to the
graph (2.5) with the hadronic blob removed can be expressed as

−→ a(1)
µ =

α

π

� ∞

0

d(Q2)f(Q2) (2.6)

where the kernel function f(Q2) is divergent as Q2 → 0 and can be expressed

f(Q2) =
m2

µQ
2Z(Q2)3(1−Q2Z(Q2))

1 + m2
µQ

2Z(Q2)2
Z(Q2) = −

Q2 −
�

Q4 + 4m2
µQ

2

2m2
µQ

2
. (2.7)

From this the expression for the hadronic vacuum polarisation contribution can be ob-
tained with some trivial insertions

had
−→ a(2)had

µ =
�α

π

�2
� ∞

0

d(Q2)f(Q2)× Π̂(Q2) (2.8)

where Π̂(Q2) is the infra-red subtracted (Π̂(Q2) = Π(Q2)−Π(0)) transverse part (Πµν(q) =
(q2gµν − qµqν)Π(q2)) of the hadronic vacuum polarisation

q, µ q, νhad ≡ iΠµν(q) (2.9)

3

Π̂(Q2) = Π(Q2)−Π(0) (Πµν(q) = (q2gµν − qµqν)Π(q2))

Πµν(q) =
�

d4x eiq·(x−y)�JEM
µ (x)JEM

ν (y)�
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Figure 2: Vacuum polarisation function Π(Q2
) as measured on 64× 32

3
lattice at

β = 2.25 and amu = 0.004.

3 Deducing a(2)had
µ

In order to infer the value of a(2)had
µ from our data we must carry out the integral (??)

which we split into high momentum and low momentum regions.

a(2)had
µ = 4α2

�� Q2
C

0

dQ2f(Q2
)× Π̂(Q2

) +

� ∞

Q2
C

dQ2f(Q2
)× Π̂(Q2

)

�
(3.1)

A continuous description of Π(Q2
) at low momenta is obtained by performing a fit

to our lattice data, which allows us to perform the low Q2
integral. The value of Π(0)

from this fit combined with a high-momentum descriptiion of Π(Q2
) from perturbation

theory allows us to perform the high momentum integral. As we shall see, the integral is

strongly dominated by the low momentum contribution.

We have attempted to fit a continuous form to our lattice data for the vacuum polari-

sation using a number of different fit forms. These vary from generic Pade approximants

to forms derived from models of vector resonance domination of the polarisation function.

The form that best fits our data, over the largest range of momenta, comprises two vector

resonance contributions. We write it as

Π(Q2
) = A +

F 2
1

Q2 + m2
1

+
F 2

2

Q2 + m2
2

. (3.2)

We note that this expression is equivalent to a particular Pade approximant, and can

observe this equivalence in the results of both fits. However, the use of (3.2) results in

7
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• Usual to break up Integral into low and high Q2 regions

• integrand peaked around muon mass (106 MeV)

Muon Anomalous Magnetic Moment
The Integral & The Kernel

a(2)had
µ = 4α2

�� Q2
C

0

dQ2f(Q2
)× Π̂(Q2

) +

� ∞

Q2
C

dQ2f(Q2
)× Π̂(Q2

)

�

contractions of eq. (2) therefore yield quark connected
contributions

〈Tr{Sq(x,y)!µSq(y,x)!"}〉 , (3)

and quark disconnected contributions

〈Tr{Sq(y,y)!µ}Tr{Sq(x,x)!"}〉 , (4)

where Sq(x,y) is the quark propagator for the quark
flavour q and the trace is over spin- and colour-indices.
In lattice simulations the latter contribution is often ne-
glected because of the huge overhead its computation
causes [10].
A new method for predicting correlation functions

consisting of quark-disconnected contributions was de-
veloped in [11]. By introducing valence quarks which are
degenerate with the dynamical flavours, each Wick con-
traction can be rewritten in terms of a single fermionic
correlation function defined in an unphysical theory. The
physical result is recovered by summing over the correla-
tion functions in the unphysical, partially quenched, the-
ory [12, 13, 14]. In particular, the above expectation val-
ues eq. (3) and (4) remain unchanged if one of the quarks
is replaced by a mass-degenerate partially quenched va-
lence quark q′. This allows to express them in terms of
individual two-point functions, the Wick-contractions of
which yield either a connected or a disconnected two-
point function:

Cconn(y,x) ≡ 〈q̄(y)!µq′(y)q̄′(x)!"q(x)〉 ,
(5)

Cdisc(y,x)≡ 〈q̄′(y)!µq′(y)q̄(x)!"q(x)〉 .

Within partially quenched chiral perturbation theory [12,
13, 14, 15, 16], expressions for the connected and the
disconnected contributions to hadronic correlation func-
tions can be computed. The case of the Nf = 2-theory
without and with a partially quenched strange quark as
well as the Nf = 2+ 1-theory were studied in [11]. In
the Nf = 2-theory for example, the calculation at next-
to-leading order in the effective theory predicts that the
disconnected contribution reduces the connected contri-
bution by only 10%.
The analytical prediction of quark-disconnected di-

agrams is work in progress. In particular, vector res-
onances which are not dynamical degrees of freedom
in chiral perturbation theory turn out to be dominating
#(Q2) [6, 7]. It will be interesting to study the impact of
vector resonances on the above predictions by including
these degrees of freedom into the chiral Lagrangian [17].
However, while the effective theory for pions and kaons
stands on solid grounds, this similar ansatz for vector
mesons is a model.
Momentum resolution
Today, typical lattices extend over L≈ 3fm in the spatial
directions (typically twice that large in the temporal
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FIGURE 2. Shape of the integral kernel in eq. (1) assuming
vector dominance for #(Q2).

direction, T = 2L). Besides vanishing momentum, the
lowest hadron momentum therefore corresponds to the
lowest non-vanishing Fourier-mode, 2$/T ≈ 200MeV.
The plot in figure 2 shows the integral kernel of
eq. (1), which is peaked at around the muon mass,
mµ ≈ 106MeV. The lattice data therefore needs to be
extrapolated into this region. In order to compute #(Q2)
closer to the peak, the Mainz group [8] is applying
twisted boundary conditions to the valence quark fields,
q(x + Lî) = ei%iq(x), which allows one to tune the
offset of the Fourier Modes accessible in the lattice
computation [18, 19, 20, 21, 22, 23, 24]. Naively, the
twists applied to the quark-fields in the flavour-diagonal
currents in eq. (2) will cancel (see e.g. [20]). However,
the connected correlation function in eq. (5),Cconn.(y,x),
is composed of flavour-off-diagonal currents. Hence,
different twist-angles can be applied for the quark fields
q and q′, respectively [11]. This argument allows to ap-
ply partial twisting at least to the connected contribution
to aLHVµ . The disconnected contribution can either be
predicted using chiral perturbation theory (cf. above) or
it can be computed for the usual Fourier momenta and
then be interpolated using the ansatz provided by chiral
perturbation theory. Figure 3 shows results for #(Q2)
by the Mainz group. Without twisting only the blue
data points are accessible, while with twisting the red
data points can be added. Besides providing data points
closer to the region where the integral eq. (1) receives
major contributions, the additional data points for larger
values of the momentum will help in stabilising fits: In
order to compute the result for the vacuum polarisation
tensor eq. (2) one first fits an ansatz for its momentum-
dependence to the data and then integrates it. The Mainz
group uses models for the vector resonance, polynomials
and Padé approximations as ansätze (cf. also ETM’s
study of parametrisations of vector resonances in [7]).
An estimate of the systematic uncertainties is obtained
from the spread of the respective fit-results. In our

Della Morte et al., arXiv:1011.5793 [hep-lat]



• Usual to break up Integral into low and high Q2 regions

• integrand peaked around muon mass (106 MeV)

• Smallest momentum on the lattice

• Twisted boundary conditions

• Disconnected contributions from ChPT

Muon Anomalous Magnetic Moment
The Integral & The Kernel

a(2)had
µ = 4α2

�� Q2
C

0

dQ2f(Q2
)× Π̂(Q2

) +

� ∞

Q2
C

dQ2f(Q2
)× Π̂(Q2

)

�

contractions of eq. (2) therefore yield quark connected
contributions

〈Tr{Sq(x,y)!µSq(y,x)!"}〉 , (3)

and quark disconnected contributions

〈Tr{Sq(y,y)!µ}Tr{Sq(x,x)!"}〉 , (4)

where Sq(x,y) is the quark propagator for the quark
flavour q and the trace is over spin- and colour-indices.
In lattice simulations the latter contribution is often ne-
glected because of the huge overhead its computation
causes [10].
A new method for predicting correlation functions

consisting of quark-disconnected contributions was de-
veloped in [11]. By introducing valence quarks which are
degenerate with the dynamical flavours, each Wick con-
traction can be rewritten in terms of a single fermionic
correlation function defined in an unphysical theory. The
physical result is recovered by summing over the correla-
tion functions in the unphysical, partially quenched, the-
ory [12, 13, 14]. In particular, the above expectation val-
ues eq. (3) and (4) remain unchanged if one of the quarks
is replaced by a mass-degenerate partially quenched va-
lence quark q′. This allows to express them in terms of
individual two-point functions, the Wick-contractions of
which yield either a connected or a disconnected two-
point function:

Cconn(y,x) ≡ 〈q̄(y)!µq′(y)q̄′(x)!"q(x)〉 ,
(5)

Cdisc(y,x)≡ 〈q̄′(y)!µq′(y)q̄(x)!"q(x)〉 .

Within partially quenched chiral perturbation theory [12,
13, 14, 15, 16], expressions for the connected and the
disconnected contributions to hadronic correlation func-
tions can be computed. The case of the Nf = 2-theory
without and with a partially quenched strange quark as
well as the Nf = 2+ 1-theory were studied in [11]. In
the Nf = 2-theory for example, the calculation at next-
to-leading order in the effective theory predicts that the
disconnected contribution reduces the connected contri-
bution by only 10%.
The analytical prediction of quark-disconnected di-

agrams is work in progress. In particular, vector res-
onances which are not dynamical degrees of freedom
in chiral perturbation theory turn out to be dominating
#(Q2) [6, 7]. It will be interesting to study the impact of
vector resonances on the above predictions by including
these degrees of freedom into the chiral Lagrangian [17].
However, while the effective theory for pions and kaons
stands on solid grounds, this similar ansatz for vector
mesons is a model.
Momentum resolution
Today, typical lattices extend over L≈ 3fm in the spatial
directions (typically twice that large in the temporal
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FIGURE 2. Shape of the integral kernel in eq. (1) assuming
vector dominance for #(Q2).

direction, T = 2L). Besides vanishing momentum, the
lowest hadron momentum therefore corresponds to the
lowest non-vanishing Fourier-mode, 2$/T ≈ 200MeV.
The plot in figure 2 shows the integral kernel of
eq. (1), which is peaked at around the muon mass,
mµ ≈ 106MeV. The lattice data therefore needs to be
extrapolated into this region. In order to compute #(Q2)
closer to the peak, the Mainz group [8] is applying
twisted boundary conditions to the valence quark fields,
q(x + Lî) = ei%iq(x), which allows one to tune the
offset of the Fourier Modes accessible in the lattice
computation [18, 19, 20, 21, 22, 23, 24]. Naively, the
twists applied to the quark-fields in the flavour-diagonal
currents in eq. (2) will cancel (see e.g. [20]). However,
the connected correlation function in eq. (5),Cconn.(y,x),
is composed of flavour-off-diagonal currents. Hence,
different twist-angles can be applied for the quark fields
q and q′, respectively [11]. This argument allows to ap-
ply partial twisting at least to the connected contribution
to aLHVµ . The disconnected contribution can either be
predicted using chiral perturbation theory (cf. above) or
it can be computed for the usual Fourier momenta and
then be interpolated using the ansatz provided by chiral
perturbation theory. Figure 3 shows results for #(Q2)
by the Mainz group. Without twisting only the blue
data points are accessible, while with twisting the red
data points can be added. Besides providing data points
closer to the region where the integral eq. (1) receives
major contributions, the additional data points for larger
values of the momentum will help in stabilising fits: In
order to compute the result for the vacuum polarisation
tensor eq. (2) one first fits an ansatz for its momentum-
dependence to the data and then integrates it. The Mainz
group uses models for the vector resonance, polynomials
and Padé approximations as ansätze (cf. also ETM’s
study of parametrisations of vector resonances in [7]).
An estimate of the systematic uncertainties is obtained
from the spread of the respective fit-results. In our

Della Morte et al., arXiv:1011.5793 [hep-lat]

2π/T ≈ 200 MeV

Brandt et al., arXiv:1010.2390 [hep-lat]

Della Morte and Jüttner, JHEP 1011,154 (2010)

Model dependence
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FIG. 1: Comparison of methods for a
hvp
µ . The upper set of

points are the results for ahvp
µ using H = mV , the middle set

use H = fV and the lower set correspond to the standard
method. The two lines are linear extrapolations of ahvp

µ and

the curve is the phenomenological extrapolation of ahvp
µ . The

three methods agree at the physical point, denoted by the
dashed line, and agree with the estimated two-flavor contri-
bution to the experimental value.
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FIG. 2: Phenomenological model for mV . A model function
is used to parameterize both our lattice calculation of mV and
the PDG value of the physical mρ. This model is only used
to illustrate the difficulties in the standard method.

Additionally, f(m2
l /m

2
V ) should vanish for ml → 0 and

mV → ∞. Thus on rather general grounds we expect
a
hvp
l,V ≈ Cg

2
V m

2
l /m

2
V with a model-dependent constant

C.
These expectations can be combined with our lattice

calculation of mV and gV . As shown in Fig. 2, we find
that mV decreases moderately with decreasing mPS but
the values from our calculation are still rather high com-
pared to the experimental result mρ. Thus at some point
a rapid decrease in mV must occur. In contrast, gV , not
shown, has a mild dependence on mPS and extrapolates

smoothly to the experimental value gρ. When combined

with the model expectation a
hvp
µ,V ∝ g

2
V /m

2
V , the behavior

of ahvpµ in Fig. 1 becomes plausible. The values of ahvpµ are
lower than the experimental value and vary moderately
for the region of mPS covered in our calculation. Only
at lighter values of mPS do we expect a sharp increase
in a

hvp
µ .

We can make these observations more precise, at the
expense of introducing model dependence, by consider-
ing the tree-level form for the vector-meson contribution
a
hvp
l,V as given from effective field theory [11]. This gives

a specific result for f(m2
l /m

2
V ) that we combine with our

calculation ofmV and gV to construct a model-dependent
extrapolation of the results for a

hvp
µ . Additionally, con-

straining mV to approach mρ as shown in Fig. 2 gives
the lowest lying curve in Fig. 1. The apparent agreement
with the physical value for ahvpµ increases the plausibility
that our explanation is correct. However, this construc-
tion does not provide a reliable means of extrapolating
our results to the physical mπ but instead serves to il-
lustrate the apparently strong mPS dependence in the
standard method.
The difficulties encountered in the standard method

can be traced to the occurrence of two distinct scales, ml

and mV . Apart from any model, this is relevant because
a
hvp
l is made dimensionless at the expense of introducing

an external scale ml that is completely unrelated to the
scales of QCD. Based on this observation, we define the
following class of observables

a
hvp

l
= α2

� ∞

0
dQ

2 1

Q2
w(Q2

/m
2
l ·H2

phys/H
2)ΠR(Q

2) (3)

where H is any hadronic quantity, understood to be a
function of mPS , and Hphys is its physical value. The
natural choice for our calculation is H = mV , but any
choice produces a new modified quantity that has the
same physical limit as ahvpl . This follows simply by con-
struction because H(mPS → mπ) = Hphys. The stan-
dard method can be formally reproduced by the choice
H = 1, but choosing a dimensionful scale has the ad-
ditional advantage that the explicit dependence on the
lattice spacing is eliminated. At the same time, the renor-
malization condition that defines the physical limit is now
given by the dimensionless ratioml/Hphys rather thanml

alone.
The calculation of ahvpµ using H = mV and H = fV ,

the vector-meson decay constant, are shown in Fig. 1.
All three extrapolations agree with each other and with
the estimated two-flavor contribution to the experimen-
tal measurement of ahvpµ . The results for the new method
show a significantly milder dependence on mPS . This
can be understood using the model considerations ear-
lier. Specifically for H = mV , we expect a vector-meson
contribution of al,V ≈ Cg

2
V m

2
l /m

2
ρ, in which only the

mild mPS dependence of gV now enters. The demon-
stration that H = fV results in similar improvements

Clover Domain Wall

Twisted Mass



• Lattice hadronic matrix elements becoming available with near physical masses

• Nucleon Form Factors: Evidence for chiral curvature in the lqm regime for r1, r2, κ

• Pion Form Factor: twisted boundary conditions allow results to be obtained at 
small Q2 - reliable determination of charge radius

• gA still a challenge: 

• Finite volume effects go in the right direction, but are they enough

• Renormalisation? Excited state contamination?

•       results still show no sign of “bending down” towards phenomenological point. 
Finite effects? Renormalisation?

• Muon g-2: results with several fermion actions becoming available at light masses

• Sensitivity to Q2 region helped with tbcs

Conclusions & Outlook
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