

Hadron Structure, Baryon and Meson Form Factors and g-2 from the lattice

James Zanotti The University of Edinburgh

Hadron 2011, Künstlerhaus, Munich, Germany, June 13-17, 2011

Topics to Cover

Baryon/Meson Form Factors

- Provide information of size, shape and internal (charge) densities
- e.g. Neutron has charge zero, but charge density +/-?
- Good place to search for chiral non-analytic behaviour

Nucleon Axial Charge

- Neutron beta decay, chiral symmetry breaking
- Study finite size effects
- Quark Momentum Fraction

- Will it ever bend down?
- (g-2)_{mu}
 - Hadronic (vacuum polarisation) contribution

Motivation: Electromagnetic Form Factors

$$\langle p', s'|J^{\mu}(\vec{q})|p, s\rangle = \bar{u}(p', s') \left[\gamma^{\mu}F_1(q^2) + i\sigma^{\mu\nu}\frac{q_{\nu}}{2m}F_2(q^2)\right]u(p, s)$$

Quark (charge) distribution in transverse plane

$$q(b_{\perp}^2) = \int d^2 q_{\perp} \,\mathrm{e}^{-i\vec{b}_{\perp}\cdot q_{\perp}} F_1(q^2)$$

Distance of (active) quark to the centre of momentum in a fast moving nucleon

Provide information on the size and internal charge densities

Scaling of Form Factors

Scaling of Form Factors

Scaling of Form Factors

Size of the Proton

- > 5σ discrepancy between muonic hydrogen and *e-p* scattering
 - r_p=0.84184(67) fm [Nature 466, 213 (2010]
 - r_p=0.875(8)(6) fm
- [arXiv:1102.0318]

Form Factor Radii & Magnetic Moments

Search for non-analytic behaviour predicted by Chiral Perturbation Theory

- * Form factor radii: $r_i^2 = -6 \frac{dF_i(q^2)}{dq^2}\Big|_{q^2=0}$
- * Magnetic moment μ /anomalous magnetic moment κ

Form Factor Radii & Magnetic Moments

Search for non-analytic behaviour predicted by Chiral Perturbation Theory

* Form factor radii:
$$r_i^2 = -6 \frac{dF_i(q^2)}{dq^2}\Big|_{q^2=0}$$

* Magnetic moment μ /anomalous magnetic moment κ

The Lattice

The Lattice

- * Discretise space-time with lattice spacing a volume L^3xT
- Quark fields reside on sites
- * Gauge fields on the links

 $U_{\mu}(x) \left[\psi(x+a\hat{\mu}) \right]$

L=Na

 $\psi(x)$

 $\hat{\mu}$

Nucleon Mass

Lattice Form Factors

[QCDSF arXiv:1106.XXXX]

Fixed lattice spacing, wide range of quark masses

 F^{u-d}

 F^{u+d}

Fixed lattice spacing, wide range of quark masses

Quark Mass Dependence Contact with ChPT?

- Popular expressions from Phys. Rev. D71, 034508 (2005) (SSE)
- But are they valid up to $\,m_\pi < 300\,\,{
 m MeV}\,$?
- Our method: Vary unknown parameters over a "reasonable" range and extrapolate up from the chiral limit with the only constraint provided by the experimental point

Dirac Radius

- Rapidly decreasing isovector Dirac ms radius as pion mass increases
- Overlap with the lattice data points at $m_{\pi} \approx 250 \dots 300 \text{ MeV}$
- Similar observations for Pauli radius and anomalous magnetic moment

Axial Charge, gA

- Governs neutron ß decay
- Measure of spontaneous chiral symmetry breaking
- Related to 1st moment of helicity-dependent quark distribution functions $g_A = \Delta u \Delta d$
- Lattice calculations:
 - benchmark calculation
 - zero momentum, isovector
 - Known to suffer from large finite size effects
 - What size lattice is needed at low m_{π} ?

- Increased interest from several lattice collaborations
 - QCDSF PRD 74, 094508 (2006)
 - LHPC PRL 96, 052001 (2006)
 - RBC/UKQCD PRL 100, 171602 (2008)
 - ETMC PRD 83, 045010 (2011)
 - CLS/Mainz arXiv:1106.1554 [hep-lat]

arXiv:1106.1554 [hep-lat]

$$G(t,\tau,p,p') = \sum_{\vec{x},\vec{y}} \sum_{s,s'} e^{-E_{p'}(t-\tau)} e^{-E_p\tau} e^{-i\vec{p}'\cdot(\vec{y}-\vec{x})} e^{-i\vec{p}\cdot\vec{x}} \langle \Omega | \chi | p',s' \rangle \langle p',s' | \mathcal{O} | p,s \rangle \langle p,s | \overline{\chi} | \Omega \rangle$$

- Lattice correlation functions overlap with ground + excited states of, eg. proton
- Ground state isolated at large Euclidean times
- Lattice 3-point functions used a fixed sink
 - Residual excited state contamination?

Finite Volume Effects?

 $g_A/f_{\pi} \; [{\rm GeV}^{-1}]$

• Quenching? Chiral physics? Finite volume effects?

• However ratios of lattice results again look good, e.g.

• Asymptotic normalisation known from $\pi
ightarrow \mu +
u$ decay

$$F_{\pi}(Q^2 \to \infty) = \frac{16\pi\alpha_s(Q^2)f_{\pi}^2}{Q^2}$$

- Allows to study the transition from the soft to hard regimes
- Low Q²: measured directly by scattering high energy pions from atomic electrons
- High Q²: quasi-elastic scattering off virtual pions

 $(r_{\pi}$ =

- Under investigation by several lattice collaborations
 - CLS/Mainz arXiv:1106.1554 [hep-lat] PACS/CS arXiv:1003.3321 [hep-lat]
 - ETMC PRD 79, 074506 (2009) QCDSF EPJ C51,335 (2007)

• JLQCD arXiv:1012.0137 [hep-lat] • RBC/UKQCDJHEP 0807:112 (2008)

Accessing small Q²

• On a periodic lattice with spatial volume L³, momenta are discretised in units of $2\pi/L$

Pion Form Factor hep-lat/0411033, hep-lat/0703005

- On a periodic lattice with spatial volume L³, momenta are discretised in units of $2\pi/L$
- Modify boundary conditions on the valence quarks

 $\psi(x_k + L) = e^{i\theta_k}\psi(x_k), \quad (k = 1, 2, 3)$

- allows to tune momenta $\vec{p}_{\rm FT} + \dot{\theta}/L$ continuously
- Introduces additional (small) <u>finite</u> volume effect $\sim e^{-m_{\pi}L}$

0.4

1.2

Accessing small Q^2

RBC/UKQCD JHEP 0807:112 (2008)

 $a_{\mu} = \frac{(g-2)_{\mu}}{2}$

Muon Anomalous Magnetic Moment

- Describes contribution from quantum effects to the magnetic moment
- Provides a precision test of the Standard Model
- Studied experimentally > 50 years and now achieving 0.5ppm precision
- Standard Model contributions

• QCD

• QED	
	perturbation theory
Weak	

non-perturbative

[exp: e⁺e⁻ annihilation, hadronic tau decays]

- Sensitive to physics Beyond the Standard Model
- \bullet Theory Experiment differ by 3.2σ
- Dominant source of error from the hadronic (QCD) contribution

Muon Anomalous Magnetic Moment

- Hadronic (QCD) contribution are of two types
 - Vacuum polarisation
 - Early lattice work: Blum, PRL 91, 052001 (2003), Göckeler et al., NPB 688, 135 (2004)
 - A lot of recent attention ETMC, Mainz, RBC/UKQCD
 - Light-by-light scattering
 - A challenge on the lattice (4 point function)
 - Two groups currently investigating (T. Blum et al., P. Rakow et al.)
 - No definite results (Hadron 2013?)

Muon Anomalous Magnetic Moment

• Hadronic vacuum polarisation

where

 $\hat{\Pi}(Q^2) = \Pi(Q^2) - \Pi(0) \qquad (\Pi_{\mu\nu}(q) = (q^2 g_{\mu\nu} - q_\mu q_\nu) \Pi(q^2))$

Muon Anomalous Magnetic Moment The Integral & The Kernel

• Usual to break up Integral into low and high Q² regions

$$a_{\mu}^{(2)had} = 4\alpha^2 \left[\int_0^{Q_C^2} dQ^2 f(Q^2) \times \hat{\Pi}(Q^2) + \int_{Q_C^2}^{\infty} dQ^2 f(Q^2) \times \hat{\Pi}(Q^2) \right]$$

• integrand peaked around muon mass (106 MeV)

Muon Anomalous Magnetic Moment The Integral & The Kernel

• Usual to break up Integral into low and high Q² regions

$$a_{\mu}^{(2)had} = 4\alpha^2 \left[\int_0^{Q_C^2} dQ^2 f(Q^2) \times \hat{\Pi}(Q^2) + \int_{Q_C^2}^{\infty} dQ^2 f(Q^2) \times \hat{\Pi}(Q^2) \right]$$

- integrand peaked around muon mass (106 MeV)
- Smallest momentum on the lattice

 $2\pi/T \approx 200 \,\mathrm{MeV}$

- Model dependence
- Twisted boundary conditions

Brandt et al., arXiv:1010.2390 [hep-lat]

• Disconnected contributions from ChPT Della Morte and Jüttner, JHEP 1011,154 (2010)

Muon Anomalous Magnetic Moment The Integral & The Kernel

Conclusions & Outlook

- Lattice hadronic matrix elements becoming available with near physical masses
- Nucleon Form Factors: Evidence for chiral curvature in the Iqm regime for r₁, r₂, κ
- Pion Form Factor: twisted boundary conditions allow results to be obtained at small Q² - reliable determination of charge radius
- g_A still a challenge:
 - Finite volume effects go in the right direction, but are they enough
 - Renormalisation? Excited state contamination?
- $\langle x \rangle$ results still show no sign of "bending down" towards phenomenological point. Finite effects? Renormalisation?
- Muon g-2: results with several fermion actions becoming available at light masses
 - Sensitivity to Q² region helped with tbcs