

Helicity	тмр	Future	Summary & Outlook
Motivation			
$\frac{\text{Motivation I:}}{\text{Where does the Nu}}$ Where does the Nu Spin come from $\frac{1}{2} = \frac{1}{2} \Delta \Sigma + \Delta G + R$	cleon ? $L_q + L_G$		

Jörg Pretz

2 / 40

Helicity	TMD	Future	Summary & Outlook
Outline			

- Motivation
- Helicity distribution of quarks and gluons mainly results from deep inelastic scattering (polarized pp ⇒ E. Aschenauer)
- Transversity distributions & Transverse Momentum Dependent (TMD) distributions mainly asymmetries (extraction of TMDs ⇒ M. Anselmino)
- Future measurements

Helicity	TMD	Future	Summary & Outlook
	H	lelicity	

Distributions

うせん 聞い ふぼう ふぼう ふしゃ

Helicity	TMD	Future	Summary & Outlook
What do we kno	w?		

- helicity contribution of quarks to nucleon spin: $\Delta \Sigma \approx 30\%$ But how do contributions of different flavors $\Delta q(\mathbf{x}), q = u, d, s, \bar{u}, \bar{d}, \bar{s}$ look like?
- gluon helicity distribution ΔG = ∫₀¹ Δg(x)dx small?
 But how small? How does Δg(x) look like?

Helicity	TMD	Future	Summary & Outlook
Helicity distribut	tions		

How can they by measured?

Find a process where one probes interaction with quark/gluon of a given polarization with respect to the parent nucleon.

Can be done in two ways, using

- double polarization in Deep Inelastic Scattering: $\vec{\ell} + \vec{N} \rightarrow \ell' + \text{hadrons} + X$ Proton-Proton Scattering: $\vec{p} + \vec{p} \rightarrow \text{Jet}/\gamma/\text{hadrons} + X$
- ② single polarization & weak interaction: $\vec{p} + p \rightarrow W^{\pm} \rightarrow e^{\pm} + \nu$

Helicity		TMD		Future	2	Sum	mary & Ou	ıtlook
Exp	eriments	5						
		√s	1970	1980	1990	2000		
	SLAC	eN 10 GeV	 E80	E130 E142	/3 E144/5			
	CERN	µN 17 GeV		EMC	SMC	COMPASS		
	DESY	eN 7 GeV			HERM	ES		
	JLAB	eN 3.3GeV				CLAS,HALLA		
	BNL	pp 500 GeV				PHENIX,STAI	R,	

æ

・ロ・・ (中・・ ボッ・ (中・)

Helicity	TMD	Future	Summary & Outlook
Proton Asy	mmetry		

$$ec{\ell}(k) + ec{N}(p)
ightarrow \ell'(k') + X(P_X)$$

Jörg Pretz

Helicity	TMD	Future	Summary & Outlook

Stamp Collection: inclusive asymmetries

Helicity	TMD	Future	Summary & Outlook
Result on	first moments	$\Delta q = \int_0^1 \Delta q(x) \mathrm{d}x$	

using inclusive & semi-inclusive asymmetries, $\vec{p}\vec{p}$, neutron & hyperon decay:

		global analysis ¹⁾		
ΔΣ	=	0.25 ± 0.05		
$\Delta u + \Delta \bar{u}$	=	0.81 ± 0.03		
$\Delta d + \Delta \bar{d}$	=	-0.46 ± 0.03		
$\Delta s + \Delta \bar{s}$	=	-0.11 ± 0.06		
at $Q^2 = 10 \text{GeV}^2$				

¹) (DSSV) D. de Florian, R. Sassot, M. Stratmann and W. Vogelsang, Phys. Rev. D **80** (2009) 034030, [arXiv:0904.3821 [hep-ph]], (error only for measured region 0.001 < x < 1)

<ロト < 回 > < 回 > < 三 > < 三 > 三 三

Helicity	TMD	Future	Summary & Outlook
Result on	first moments	$\Delta q = \int_0^1 \Delta q(x) \mathrm{d}x$	

using inclusive & semi-inclusive asymmetries, $\vec{p}\vec{p}$, neutron & hyperon decay:

		global analysis ¹⁾	lattice QCD ²⁾
ΔΣ	=	0.25 ± 0.05	
$\Delta u + \Delta \bar{u}$	=	0.81 ± 0.03	0.82 ± 0.04
$\Delta d + \Delta \bar{d}$	=	-0.46 ± 0.03	-0.41 ± 0.04
$\Delta s + \Delta \bar{s}$	=	-0.11 ± 0.06	
at $Q^2 = 10^{-10}$)GeV	2	

¹) (DSSV) D. de Florian, R. Sassot, M. Stratmann and W. Vogelsang, Phys. Rev. D **80** (2009) 034030, [arXiv:0904.3821 [hep-ph]], (error only for measured region 0.001 < x < 1)

2) J. D. Bratt *et al.* [LHPC Collaboration], Phys. Rev. D 82 (2010) 094502, [arXiv:1001.3620 [hep-lat]]

Jörg Pretz

Helicity	TMD	Future	Summary & Outlook
Result on	first moments	$\Delta q = \int_0^1 \Delta q(x) \mathrm{d}x$	

using inclusive & semi-inclusive asymmetries, $\vec{p}\vec{p}$, neutron & hyperon decay:

		global analysis ¹⁾	lattice QCD ²⁾
ΔΣ	=	0.25 ± 0.05	
$\Delta u + \Delta \bar{u}$	=	0.81 ± 0.03	0.82 ± 0.04
$\Delta d + \Delta \bar{d}$	=	-0.46 ± 0.03	-0.41 ± 0.04
$\Delta s + \Delta \overline{s}$	=	-0.11 ± 0.06	
at $Q^2 = 10^2$)GeV	2	

up to now only information on first moments of $\Delta q + \Delta ar q$, because $e_q^2 = e_{ar q}^2$

¹) (DSSV) D. de Florian, R. Sassot, M. Stratmann and W. Vogelsang, Phys. Rev. D **80** (2009) 034030, [arXiv:0904.3821 [hep-ph]], (error only for measured region 0.001 < x < 1)

2) J. D. Bratt *et al.* [LHPC Collaboration], Phys. Rev. D 82 (2010) 094502, [arXiv:1001.3620 [hep-lat]]

Jörg Pretz

Helicity	TMD	Future	Summary & Outlook
Helicity	distributions		

How to separate contributions from $\Delta q(x)$ and $\Delta \bar{q}(x)$?

Principle:

Measure double spin asymmetries of various hadronic final states h in $\vec{\ell} + \vec{N} \to \ell' + X + hadrons$

$$\frac{N_h^{\uparrow\downarrow} - N_h^{\uparrow\uparrow}}{N_h^{\uparrow\downarrow} + N_h^{\uparrow\uparrow}} \propto A^h = \frac{\sum_q e_q^2 \left(\Delta q(x) D_q^h(z) + \Delta \bar{q}(x) D_{\bar{q}}^h(z) \right)}{\sum_q e_q^2 \left(q(x) D_q^h(z) + \bar{q}(x) D_{\bar{q}}^h(z) \right)}$$

- D_q^h : fragmentation function
- $D_q^h(z)dz =$ number of hadrons of type *h* produces from a quark *q* with energy fraction in [z, z + dz]
- $D_u^{\pi^+} > D_{\bar{u}}^{\pi^+}$
- Kaon asymmetries are for example are sensitive to Δs
- (\rightarrow N. Makke, Tue 16.50)

Helicity	TMD	Future	Summary & Outlook

Semi-Inclusive Asymmetries

< ∃⇒

Helicity TMD Future Summary & Outlook

Asymmetries $\rightarrow \Delta q$ in LO QCD

Solve:

$$\vec{A} = B \Delta \vec{q}$$

•
$$\vec{A} = (A_{1,p}, A_{1,p}^{\pi^+}, A_{1,p}^{K^+}, \dots, A_{1,d}, \dots, A_{1,d}^{K^-})$$

• $\Delta \vec{q} = (\Delta u, \Delta d, \Delta s, \Delta \bar{u}, \Delta \bar{d}, \Delta \bar{s})$
• $B(q, \int D_{\alpha}^{h} dz)$

<ロト < 回 > < 回 > < 三 > < 三 > 三 三

Helicity

 $\Delta u(x), \Delta d(x), \Delta s(x), \Delta \bar{u}(x), \Delta \bar{d}(x), \Delta \bar{s}(x)$

assuming $\Delta s = \Delta \bar{s}$

Helicity	TMD	Future	Summary & Outlook

Helicity distributions from $\vec{p}p$ at RHIC

- Instead of measuring double spin asymmetries, one can measure single spin asymmetries and use weak interaction
- Done at RHIC $(ec{p}+p
 ightarrow W^{\pm}
 ightarrow e^{\pm}+
 u$ at $\sqrt{s}=500$ GeV)

$$\begin{array}{l} \mathcal{A}_{L}^{W^{+}} = \frac{\Delta \bar{d}(x_{1})u(x_{2}) - \Delta u(x_{1})\bar{d}(x_{2})}{u(x_{1})\bar{d}(x_{2}) + \bar{d}(x_{1})u(x_{2})} \\ \mathcal{A}_{L}^{W^{-}} = (u \leftrightarrow d) & \text{no fragmentation func.!} \end{array}$$

Jörg Pretz

Helicity	TMD	Future	Summary & Outlook
Results			

STAR

◆□▶ ◆□▶ ◆□▶ ◆□▶ ●

Э

Helicity	TMD	Future	Summary & Outlook
	Gluo	n Helicity	

◆□→ ◆□→ ◆三→ ◆三→ 三 - つへぐ

Helicity	TMD	Future	Summary & Outlook
How to measure	ΔG ?		

Deep Inelastic scattering		
$ec{\ell}ec{\mathcal{N}} o \ell' + high \; p_{\mathcal{T}} \; hadrons + X$	$A \propto \Delta q \& \Delta g$	
	contribution of Δg enhanced	
	due to selection of high p_T	
$ec{\ell}ec{\mathcal{N}} ightarrow \ell' + charmed meson + X$	$A \propto \Delta g$	
	clean tag of glue	
Polarized	pp scattering	
$\vec{p}\vec{p}$ \Rightarrow hadrons + X	$A \propto \Delta q \Delta q \& \Delta q \Delta g \& \Delta g \Delta g$	
$ec{ ho}ec{ ho} ightarrow$ jet $+X$		
$ec{ ho}ec{ ho} ightarrow$ jet $+$ jet $+$ X		
$ec{ ho}ec{ ho} ightarrow \gamma+{ m jet}+X$	reconstruction of momentum fraction	
$ec{ ho}ec{ ho} o \gamma + X$	$A \propto \Delta q \Delta g$	
globa	al analysis	
NLO analysis of in	clusive & semi-inclusive	
asymmetries	& $\vec{p}\vec{p}$ asymmetries	
	< □ > < □ > < 豆 > < 豆 > < 豆 > < 豆 > < 豆 > < Ͻ	

			-		-
_	0.	-	•	20	+
	u	× .	Е.	re:	
_	_	•	-		

Э

・ロン ・四 と ・ ヨン ・ ヨン …

Helicity	TMD	Future	Summary & Outlook
How to measure	$\Delta G?$		

Deep Inelastic scattering		
$ec{\ell}ec{\mathcal{N}} o \ell' + high p_{\mathcal{T}} hadrons + X$	$A \propto \Delta q \& \Delta g$	
	contribution of Δg enhanced	
	due to selection of high p_T	
$ec{\ell}ec{\mathcal{N}} ightarrow \ell' + ext{charmed meson} + X$	$A \propto \Delta g$	
	clean tag of glue	
Polarized pp scattering		
$ec{p}ec{p} \Rightarrow hadrons + X$	$A \propto \Delta q \Delta q \& \Delta q \Delta g \& \Delta g \Delta g$	
$ec{ ho}ec{ ho} ightarrow$ jet $+X$		
$ec{ ho}ec{ ho} ightarrow$ jet $+$ jet $+$ X		
$ec{ ho}ec{ ho} ightarrow \gamma+{ m jet}+X$	reconstruction of momentum fraction	
$ec{ ho}ec{ ho} ightarrow\gamma+X$	$A \propto \Delta q \Delta g$	
globa	al analysis	
NLO analysis of inclusive & semi-inclusive		
asymmetries	& $\vec{p}\vec{p}$ asymmetries	
	◆□ → ◆□ → ◆豆 → ◆豆 → ⑤ 目 → ⑦	

			-		
_	01	~	•••	20	÷
	UI.	× .	-	re	1.2
		-			

Helicity	TMD	Future	Summary & Outlook
How to measure	ΔG ?		

$$\frac{N_{D0}^{\uparrow\downarrow} - N_{D0}^{\uparrow\uparrow}}{N_{D0}^{\uparrow\downarrow} + N_{D0}^{\uparrow\uparrow}} \propto \frac{\Delta g}{g}$$

Jörg Pretz

Helicity	TMD	Future	Summary & Outlook

Results on ΔG from DIS (high p_T and open charm)

• Data show small values of $\Delta g/g$ at gluon momentum fraction $x_g \approx 0.1$

・ロン ・四 と ・ ヨン ・ ヨン …

Helicity	TMD	Future	Summary & Outlook

Results on ΔG from DIS (high p_T and open charm)

- Data show small values of $\Delta g/g$ at gluon momentum fraction $x_g \approx 0.1$
- Result of open charm NLO analysis

Jörg Pretz

Helicity	TMD	Future	Summary & Outlook

Results on ΔG from DIS (high p_T and open charm)

 Compared with NLO 'global' analyses COMPASS: inclusive asymmetries & open charm

LSS: E. Leader, A. V. Sidorov and D. B. Stamenov, arXiv:1012.5033 [hep-ph],

inclusice & semi-inclusive asymmetries

DSSV: inclusice, semi-inclusive asymmetries & pp data

Helicity	TMD	Future	Summary & Outlook
How to measure	$\Delta G?$		

Deep Inelastic scattering				
$ec{\ell}ec{\mathcal{N}} o \ell' + high \; p_{\mathcal{T}} \; hadrons + X$	$A \propto \Delta q \& \Delta g$			
	contribution of Δg enhanced			
	due to selection of high p_T			
$ec{\ell}ec{\mathcal{N}} o \ell' + charmed \; meson + X$	$A \propto \Delta g$			
	clean tag of glue			
Polarized pp scattering				
$\vec{p}\vec{p}$ \Rightarrow hadrons + X	$A \propto \Delta q \Delta q \& \Delta q \Delta g \& \Delta g \Delta g$			
$ec{ ho}ec{ ho} ightarrow$ jet $+$ X				
$ec{ ho}ec{ ho} ightarrow$ jet $+$ jet $+$ X				
$ec{ ho}ec{ ho} ightarrow \gamma+{ m jet}+X$	reconstruction of momentum fraction			
$ec{ ho}ec{ ho} ightarrow\gamma+X$	$A \propto \Delta q \Delta g$			
globa	al analysis			
NLO analysis of inclusive & semi-inclusive				
asymmetries & $\vec{p}\vec{p}$ asymmetries				
	◆□ → ◆□ → ◆臣 → ◆臣 → ○臣 → ④			

			-		-
_	0.	-	•	20	+
	u	× .	Е.	re:	
_	_	•	-		

Helicity	TMD	Future	Summary & Outlook
Results from	RHIC		

Two examples from RHIC PHENIX: π^0 production cross section

STAR: jet cross section

18 / 40

Helicity	TMD	Future	Summary & Outlook
Results fron	n RHIC		

Two examples from RHIC PHENIX: π^0 asymmetry

STAR: jet asymmetry

18 / 40

Helicity	TMD	Future	Summary & Outlook
How to measure	$\Delta G?$		

Deep Inelastic scattering			
$ec{\ell}ec{\mathcal{N}} o \ell' + high \; p_{\mathcal{T}} \; hadrons + X$	$A \propto \Delta q \& \Delta g$		
	contribution of Δg enhanced		
	due to selection of high p_T		
$ec{\ell}ec{\mathcal{N}} ightarrow \ell' + charmed meson + X$	$A \propto \Delta g$		
	clean tag of glue		
Polarized pp scattering			
$ec{p}ec{p} \Rightarrow hadrons + X$	$A \propto \Delta q \Delta q \& \Delta q \Delta g \& \Delta g \Delta g$		
$ec{ ho}ec{ ho} ightarrow$ jet $+$ X			
$ec{ ho}ec{ ho} ightarrow$ jet $+$ jet $+$ X			
$ec{ ho}ec{ ho} ightarrow \gamma+{ m jet}+X$	reconstruction of momentum fraction		
$ec{ ho}ec{ ho} ightarrow \gamma + X$	$A \propto \Delta q \Delta g$		
globa	al analysis		
NLO analysis of inclusive & semi-inclusive			
asymmetries & $\vec{p}\vec{p}$ asymmetries			
	◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ □臣 → 約		

Jörg Pretz

Helicity	TMD	Future	Summary & Outlook

Results from global fit on all helicity pfds

about 500 data points fitted, inclusive & semi-inclusive asymmetries, RHIC pp data analysis does not (yet) include direct measurements from DIS, because NLO calculation are not available, (except for open charm)

イロト イポト イヨト イヨト

M. Stratmann, DIS 2011

D. de Florian, R. Sassot, M. Stratmann and W. Vogelsang, Phys. Rev. D 80 (2009) 034030, [arXiv:0904.3821 [hep-ph]]

Helicity	TMD	Future	Summary & Outlook

Results from global fit on all helicity pfds

about 500 data points fitted, inclusive & semi-inclusive asymmetries, RHIC pp data analysis does not (yet) include direct measurements from DIS, because NLO calculation are not available, (except for open charm)

イロト イポト イヨト イヨト

M. Stratmann, DIS 2011

D. de Florian, R. Sassot, M. Stratmann and W. Vogelsang, Phys. Rev. D **80** (2009) 034030, [arXiv:0904.3821 [hep-ph]]

Helicity	TMD	Future	Summary & Outlook
Error on Δg			

'truncated' first moments:

$$\int_{0.05}^{0.2} \Delta g(x) \mathrm{d}x = 0.005^{+0.129}_{-0.164}$$

$$\int_{0.001}^{1} \Delta g(x) \mathrm{d}x = 0.013_{-0.314}^{+0.702}$$

Helicity	TMD	Future	Summary & Outlook
Summarv	Helicity distributions		

- $\Delta G = \int_0^1 \Delta g(x) dx \approx 0 \pm \frac{1}{2}$ certainly small compared to large values $\Delta G \approx 2 - 3$ proposed to explain $\Delta \Sigma \approx 25\%$, **not** small compared to the total spin of the proton of $\frac{1}{2}$!
- x-dependence of $\Delta g(x)$ not very well determined
- only limited x-range (0.05 < x < 0.3) is covered
- $\Delta\Sigma = 0.25 \pm 0.05$
- Δu and Δd rather well known
- open questions: $\Delta \bar{u} = \Delta \bar{d}$, $\Delta s = \Delta \bar{s}$?

Helicity	ТМД	Future	Summary & Outlook
	Transverse Mo Dis	omentum De stributions	ependent

Finite Future Summary & Outlook

Transverse Momentum Dependent Distributions

- 8 distributions at leading twist,
- many more at higher leading twist,

◆□ > ◆□ > ◆□ > ◆□ > ●

Helicity	TMD	Future	Summary & Outlook

Transverse Momentum Dependent Distributions

- 8 distributions at leading twist,
- many more at higher leading twist,
- Concentrate on the two most prominent ones: Transversity (Collins) & Sivers

Jorg Pretz	Jċ	örg	Pr	etz
------------	----	-----	----	-----

Helicity	тмр	Future	Summary & Outlook

Collins & Sivers asymmetries in semi-incl. DIS

 $N \propto 1 + A_{\text{Coll}} \sin(\Phi_h - \Phi_S - \pi) + A_{\text{Siv.}} \sin(\Phi_h + \Phi_S) + \dots$

$$A_{\text{Coll.}} = \frac{\sum e_q^2 \Delta_T q \Delta_T^0 D_q^h}{\sum e_q^2 q \Delta_T^0 D_q^h}, \quad A_{\text{Siv.}} = \frac{\sum e_q^2 \Delta_0^T q D_q^h}{\sum e_q^2 \Delta_T^0 D_q^h}$$

Helicity	тмр	Future	Summary & Outlook

Collins & Sivers asymmetries in semi-incl. DIS

Jörg Pretz

Helicity	TMD	Future	Summary & Outlook

Collins & Sivers asymmetries in semi-incl. DIS

Jörg Pretz

26 / 40

Helicity	TMD	Future	Summary & Outlook

Collins & Sivers asymmetries from JLab Hall A

neutron Collins and Sivers moments obtained from ³He target

1106.0363v1 [nucl-ex]

A_N from $p \uparrow p \to \pi^0 + X$

Э

Helicity	TMD	Future	Summary & Outlook
Summary	Transversity &	Sivers	

- Measured asymmetries on different targets for different hadrons in the final state allow for a global analysis to extract various pdfs
- Wait for next presentation by M. Anselmino

イロン 不同と イヨン トロン

Helicity	TMD	Future	Summary & Outlook
	I	uture	
	Exp	periments	

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Helicity	TMD	Future	Summary & Outlook
Future program	าร		

- Continuation of measurements COMPASS, RHIC, JLab
- polarized Drell-Yan process give access to TMDs (particular interesting Sivers function: $f_{1T}^{\perp}(DY) = -f_{1T}^{\perp}(SIDIS))$ COMPASS, RHIC, FAIR, J-PARC, NICA
- Deep Virtual Compton Scattering to measure correlated space-momentum distributions in the nucleon, i.e. Generalized Parton Distributions (GPDs) COMPASS, JLab
- Polarized electron nucleon collider

talks related to these subjects:

(\rightarrow E.-M. Kabuß, Tue. 16.30, H. Moutarde, Tue. 15.30, B. Musch, Tue. 14.30)

Helicity	TMD	Future	Summary & Outlook

Future polarized Electron Nucleon Collider

Experiment	JLab	HERMES	ENC	COMPASS	EIC
	(12 GeV)		@FAIR/GSI		@BNL/JLab
$s/{ m GeV}^2$	23	50	180	300	10000
$x_{bj,min} = \frac{1}{\gamma s}$	$5 \cdot 10^{-2}$	$2 \cdot 10^{-2}$	$6 \cdot 10^{-3}$	$4 \cdot 10^{-3}$	10^{-4}
for $y = 0.9$					
and $Q^2 > 1 { m GeV}^2$					
$\mathcal{L}/(1/cm^2/s)$	$pprox 10^{38}$	$pprox 10^{32}$	$pprox 10^{32-33}$	$pprox 10^{32}$	$pprox 10^{33-34}$
$(P_T P_B f)^2$	0.026	0.16	0.41	0.026	0.24

Talk on EIC \rightarrow J. Lee, Thu. 14.55

Helicity	TMD	Future	Summary & Outlook

Future polarized Electron Nucleon Collider

Experiment	JLab	HERMES	ENC	COMPASS	EIC
	(12 GeV)		@FAIR/GSI		@BNL/JLab
$s/{ m GeV}^2$	23	50	180	300	10000
$x_{bj,min} = \frac{1}{ys}$	$5 \cdot 10^{-2}$	$2 \cdot 10^{-2}$	$6 \cdot 10^{-3}$	$4 \cdot 10^{-3}$	10^{-4}
for $y = 0.9$					
and $Q^2 > 1 { m GeV}^2$					
$\mathcal{L}/(1/cm^2/s)$	$pprox 10^{38}$	$pprox 10^{32}$	$pprox 10^{32-33}$	$pprox 10^{32}$	$pprox 10^{33-34}$
$(P_T P_B f)^2$	0.026	0.16	0.41	0.026	0.24

- Huge gain in effective luminosity $(P_T P_B f)^2 \mathcal{L}$ for polarization measurements,
- plus gain due to better reconstruction of hadronic final state compared to fixed (solid state) target experiments
 - \rightarrow better reconstruction of gluon momentum fraction x
 - ightarrow measurement of $\Delta g(\mathbf{x})$

Talk on EIC \rightarrow J. Lee, Thu. 14.55

Helicity	TMD	Future	Summary & Outlook
	Summary	[,] & Outlook	

Helicity	TMD	Future	Summary & Outlook
Summary			

 New results on helicity distributions Δq, Δg, transversity and TMDs

Helicity	TMD	Future	Summary & Outlook
Summary			

- New results on helicity distributions Δq, Δg, transversity and TMDs
- Full Flavor decomposition $\Delta u, \Delta d, \Delta s, \Delta \bar{u}, \Delta \bar{d}, \Delta \bar{s}$

イロト イポト イヨト イヨト 二日

Helicity	TMD	Future	Summary & Outlook
Summary			

- New results on helicity distributions Δq, Δg, transversity and TMDs
- Full Flavor decomposition $\Delta u, \Delta d, \Delta s, \Delta \bar{u}, \Delta \bar{d}, \Delta \bar{s}$
- $\Delta\Sigma = 0.25 \pm 0.05$, $\Delta G \approx 0 \pm \frac{1}{2}$

イロト イポト イヨト イヨト 二日

Helicity	TMD	Future	Summary & Outlook
Summary			

- New results on helicity distributions Δq, Δg, transversity and TMDs
- Full Flavor decomposition $\Delta u, \Delta d, \Delta s, \Delta \bar{u}, \Delta \bar{d}, \Delta \bar{s}$
- $\Delta\Sigma = 0.25 \pm 0.05$, $\Delta G \approx 0 \pm \frac{1}{2}$
- Nucleon Spin Puzzle still not solved

Helicity	TMD	Future	Summary & Outlook
Summary			

- New results on helicity distributions Δq, Δg, transversity and TMDs
- Full Flavor decomposition $\Delta u, \Delta d, \Delta s, \Delta \bar{u}, \Delta \bar{d}, \Delta \bar{s}$
- $\Delta\Sigma = 0.25 \pm 0.05$, $\Delta G \approx 0 \pm \frac{1}{2}$
- Nucleon Spin Puzzle still not solved
- New physics program at COMPASS(CERN), JLab, RHIC(BNL) to investigate
 Generalized Parton Distributions (GPDs) and Transverse Momentum Distributions (TMDs)

Helicity	TMD	Future	Summary & Outlook
Summary			

- New results on helicity distributions Δq, Δg, transversity and TMDs
- Full Flavor decomposition $\Delta u, \Delta d, \Delta s, \Delta \bar{u}, \Delta \bar{d}, \Delta \bar{s}$
- $\Delta\Sigma = 0.25 \pm 0.05$, $\Delta G \approx 0 \pm \frac{1}{2}$
- Nucleon Spin Puzzle still not solved
- New physics program at COMPASS(CERN), JLab, RHIC(BNL) to investigate
 Generalized Parton Distributions (GPDs) and Transverse Momentum Distributions (TMDs)

Helicity	TMD	Future	Summary & Outlook
Summary			

- New results on helicity distributions Δq, Δg, transversity and TMDs
- Full Flavor decomposition $\Delta u, \Delta d, \Delta s, \Delta \bar{u}, \Delta \bar{d}, \Delta \bar{s}$
- $\Delta\Sigma = 0.25 \pm 0.05$, $\Delta G \approx 0 \pm \frac{1}{2}$
- Nucleon Spin Puzzle still not solved
- New physics program at COMPASS(CERN), JLab, RHIC(BNL) to investigate
 Generalized Parton Distributions (GPDs) and Transverse
 Momentum Distributions (TMDs)
- An **polarized electron nucleon collider** would offer high potential for polarization measurements

Helicity	TMD	Future	Summary & Outlook
		Spare	

æ

э

Helicity TMD Future Summary & Outlook $\Delta \bar{u}(x)$ and $\Delta \bar{d}(x)$

 $\int_{0.004}^{0.3} \Delta \bar{u}(x) - \Delta \bar{d}(x) dx = 0.06 \pm 0.04 \pm 0.02$

Э

・ロン ・四 と ・ ヨン ・ ヨン …

Helicity TMD Future Summary & Outlook

$\Delta s(x)$ and $\Delta \bar{s}(x)$ from COMPASS Data

< 🗇 🕨

Helicity		TMD	Future	Summary & Outlook
_	-			

Cross Section vs. p_T

э

▲ロト ▲圖ト ▲屋ト ▲屋ト

Helicity	TMD	Future	Summary & Outlook
Unpolarize	d PDFs		

æ

▲口> ▲檀> ▲屋> ▲屋>