Quark mass dependence of light resonances and phase shifts in elastic $\pi\pi$ and πK scattering

Jenifer Nebreda, J. R. Peláez and G. Ríos Universidad Complutense de Madrid

Hadron 2011, Munich June 13-17, 2011

Jenifer Nebreda, U. Complutense de Madrid

Motivation

- Phase shifts M_{π} dependence in Standard ChPT
- Phase shifts M_{π} dependence in Unitarized ChPT
- Comparison of ChPT and lattice results
- Light resonances dependence on m̂

Summary

Motivation

Lattice: rigorous QCD results with quarks and gluons. Growing interest in scattering and scalar sector. Caveat: small, realistic quark masses are difficult to implement.

ChPT: QCD dependence on quark masses as an expansion.

We can compare:

Lattice multi-hadron states calculations \rightarrow phase shifts and scattering lengths

standard ChPT (model vs. independent) or UChPT (to go higher in \sqrt{s})

Lattice spectrum calculations vs. UChPT \rightarrow masses

Standard Chiral Perturbation Theory

Jenifer Nebreda, U. Complutense de Madrid

Chiral Perturbation Theory Weinberg, Gasser & Leutwyler

Low energy effective theory of QCD with:

DOF: Pseudo-Goldstone Bosons of the spontaneous chiral symmetry breaking

$$SU(N_f)_L \times SU(N_f)_R \rightarrow SU(N_f)_V$$

N_f=2
$$ightarrow \pi$$
's
N_f=3 $ightarrow \pi$'s, K's and \imath

expansion in masses and momenta

$$\mathcal{L}_{\text{eff}} = \mathcal{L}_2 + \mathcal{L}_4 + \mathcal{L}_6 + \cdots$$

■ parameters: Low Energy Constants (LECs) $N_f=2 \rightarrow 4$ *l*'s (one loop) and 7 *r*'s (two loops) $N_f=3 \rightarrow 8$ *L*'s (one loop) $\pi\pi$ scattering in SU(2) standard ChPT:

- Already calculated to 1 and 2 loops^{*}, we study the phases dependence on $\hat{m} = \frac{m_u + m_d}{2}$.
- Advantages:
 - SISTEMATIC EXPANSION, MODEL INDEPENDENT
 - some lattice groups already giving results for I=2 phases and scattering lenghts**

Limitations:

- only low energy region
- no resonances.

*J. Bijnens, G. Colangelo, G. Ecker, J. Gasser and M. E. Sainio, Phys. Lett. B 374, 210 (1996)

** K. Sasaki and N. Ishizuka, Phys. Rev. D 78, 014511 (2008)

Standard SU(2) ChPT amplitudes with LECs from

G. Colangelo, J. Gasser and H. Leutwyler, Nucl. Phys. B 603, 125 (2001)

O(p ²	$O(p^4)$ LECs (×10 ⁻³) $O(p^6)$) LECs(×10 ⁻⁴)	
I_1^r	$\textbf{-3.98} \pm \textbf{ 0.62}$	r_1^r	-0.60	
I_2^r	$1.89 \pm \ 0.23$	r_2^r	1.28	
$\bar{I_3}$	$\textbf{0.82 \pm -3.80}$	$r_3^{\overline{r}}$	-1.68	
I_4^r	$\textbf{6.17} \pm \textbf{1.39}$	r_4^r	-1.00	
		r_5^r	$\textbf{1.52} \pm \textbf{0.42}$	
		r_6^r	$\textbf{0.40} \pm \textbf{0.04}$	

Statistical error, not systematic

Change $\hat{m} \Rightarrow$ change on $M_{\pi}^2 = 2\hat{m}B_0 \Rightarrow$ change on f_{π} (one more $O(p^6)$ parameter: $r_f^r \approx 0 \pm 1.2 \times 10^{-4}$)

Uncertainties in phase shifts: Montecarlo Gaussian Sampling.

Jenifer Nebreda, U. Complutense de Madrid

Phase shifts vs. Momentum, increasing M_{π}

Phases vs. energy $\rightarrow \hat{m}$ dependence from the threshold's shift. Better to plot phases vs. momentum.

Standard ChPT δ dependence on M_{π}

Jenifer Nebreda, U. Complutense de Madrid

Inverse Amplitude Method Truong, Dobado, Herrero, Peláez

Elastic IAM partial waves satisfy exact unitarity

$$\mathbf{SS}^{\dagger} = \mathbf{1} \; \Rightarrow \; \mathsf{Im} \; t^{-1} = -\sigma$$

 $O(p^4)$ IAM partial waves:

$$t(s) \simeq \frac{t_2^2(s)}{t_2(s) - t_4(s)}$$

It is derived from a dispersion relation:

- exact on the elastic right cut,
- left cut and substraction constants approximated within NLO ChPT,
- fully renormalized,
- no spurious parameters.

Inverse Amplitude Method Truong, Dobado, Herrero, Peláez

Elastic IAM partial waves satisfy exact unitarity

$$\mathbf{SS}^{\dagger} = \mathbf{1} \; \Rightarrow \; \mathrm{Im} \; t^{-1} = -\sigma$$

 $O(p^6)$ IAM partial waves:

$$t(s) \simeq rac{t_2^2(s)}{t_2(s) - t_4(s) + rac{t_4^2}{t_2} - t_6}$$

It is derived from a dispersion relation:

- exact on the elastic right cut,
- left cut and substraction constants approximated within NLO ChPT,
- fully renormalized,
- no spurious parameters.

SU(2) Unitarized ChPT phase shifts vs. Momentum

Jenifer Nebreda, U. Complutense de Madrid

Unitarized SU(2)	ChPT	amplitudes	with	LECs:
------------------	------	------------	------	-------

	Two loops		
		Set A	Set D
	$O(p^4)(x10^{-3})$		
	$I_1^r(\mu)$	-5.0	-4.0
One loop	$l_2^r(\mu)$	1.7	1.2
	$I_3^r(\mu)$	0.8	0.8
$O(p^4)$ LECs (×10 ⁻³)	$I_4^r(\mu)$	6.5	6.5
$l'_{1}(\mu) = -3.7 \pm 0.2$ $l'_{1}(\mu) = 5.0 \pm 0.4$	$O(p^6)(x10^{-4})$		
$I_2(\mu) = 0.0 \pm 0.4$	$r_1^r(\mu)$	-0.6	-0.6
$I_{3}^{(\mu)}$ 6.2 ± 5.0	$r_2^r(\mu)$	1.3	1.5
$(4(\mu))$ 0.2 ± 0.1	$r_{3}^{\overline{r}}(\mu)$	-1.7	-3.3
	$r_4^r(\mu)$	2.0	0.9
	$r_5^r(\mu)$	2.0	1.7
	$r_6^r(\mu)$	-0.6	-0.7
	$r_{f}^{r}(\mu)$	-1.4	-1.8

Jenifer Nebreda, U. Complutense de Madrid

Jenifer Nebreda, U. Complutense de Madrid

Jenifer Nebreda, U. Complutense de Madrid

Crude, intuitive model of I=1 J=1 channel behavior

For a simple Breit-Wigner parametrization:

$$t(s) = \frac{-\sqrt{s}M\Gamma(p)/2p}{s - M^2 + iM\Gamma(p)} \quad \text{with} \quad \Gamma(p) = \Gamma_R \left(\frac{p}{p_R}\right)^3$$

we get a positive phase shift derivative:

$$\frac{\partial \delta(p)}{\partial (M_{\pi}^2)} = -\frac{\partial \delta(p)}{\partial (p_R^2)} = \frac{4M\Gamma(p)}{\left(4p^2 - 4p_R^2\right)^2 + M^2\Gamma(p)^2} > 0.$$

The phase shift grows as the ρ approaches threshold.

Intuitive behavior but opposed to ChPT at low momentum.

For a simple Breit-Wigner parametrization:

$$t(s) = \frac{-\sqrt{s}M\Gamma(p)/2p}{s - M^2 + iM\Gamma(p)} \quad \text{with} \quad \Gamma(p) = \Gamma_R \left(\frac{p}{p_R}\right)^3$$

we get a positive phase shift derivative:

$$\frac{\partial \delta(\boldsymbol{p})}{\partial (M_{\pi}^2)} = -\frac{\partial \delta(\boldsymbol{p})}{\partial (\boldsymbol{p}_R^2)} = \frac{4M\Gamma(\boldsymbol{p})}{\left(4\boldsymbol{p}^2 - 4\boldsymbol{p}_R^2\right)^2 + M^2\Gamma(\boldsymbol{p})^2} > 0.$$

The phase shift grows as the ρ approaches threshold.

Intuitive behavior but opposed to ChPT at low momentum.

Jenifer Nebreda, U. Complutense de Madrid

For a simple Breit-Wigner parametrization:

$$t(s) = \frac{-\sqrt{s}M\Gamma(p)/2p}{s - M^2 + iM\Gamma(p)} \quad \text{with} \quad \Gamma(p) = \Gamma_R \left(\frac{p}{p_R}\right)^3$$

we get a positive phase shift derivative:

$$\frac{\partial \delta(\boldsymbol{p})}{\partial (M_{\pi}^2)} = -\frac{\partial \delta(\boldsymbol{p})}{\partial (\boldsymbol{p}_R^2)} = \frac{4M\Gamma(\boldsymbol{p})}{\left(4\boldsymbol{p}^2 - 4\boldsymbol{p}_R^2\right)^2 + M^2\Gamma(\boldsymbol{p})^2} > 0.$$

The phase shift grows as the ρ approaches threshold.

Intuitive behavior but opposed to ChPT at low momentum.

$$\Gamma(p) = \Gamma_R \left(\frac{p}{p_R}\right)^{2l+1} \frac{D_l(p_R r)}{D_l(pr)} \equiv \tilde{\Gamma}(p) \frac{D_l(p_R r)}{D_l(pr)}$$

the phase shift derivative is given by:

$$rac{\partial \delta(p)}{\partial (M_{\pi}^2)} \simeq rac{1 + p_R^4 (r^2)'}{4 p_R^4} M ilde{\Gamma}(p)$$

Estimation of r^2 matching LO ChPT at low *p*:

$$r^2 = rac{1}{g^2 f_\pi^2} rac{M}{M_\pi} + O(M_\pi^0) \, \Rightarrow \, 1 + p_R^4 (r^2)' \, = \, 1 - rac{M \, p_R^4}{2 g^2 f_\pi^2 M_\pi^3} < 0$$

$$\Gamma(p) = \Gamma_R \left(\frac{p}{p_R}\right)^{2l+1} \frac{D_l(p_R r)}{D_l(pr)} \equiv \tilde{\Gamma}(p) \frac{D_l(p_R r)}{D_l(pr)} = \tilde{\Gamma}(p) \frac{1+(p_R r)^2}{1+(pr)^2}$$

the phase shift derivative is given by:

$$rac{\partial \delta(p)}{\partial (M_\pi^2)} \simeq rac{1 + p_R^4 (r^2)'}{4 p_R^4} M ilde{\Gamma}(p)$$

Estimation of r^2 matching LO ChPT at low p:

$$r^2 = rac{1}{g^2 f_\pi^2} rac{M}{M_\pi} + O(M_\pi^0) \, \Rightarrow \, 1 + p_R^4 (r^2)' \, = \, 1 - rac{M \, p_R^4}{2 g^2 f_\pi^2 M_\pi^3} < 0$$

$$\Gamma(p) = \Gamma_R \left(\frac{p}{p_R}\right)^{2l+1} \frac{D_l(p_R r)}{D_l(pr)} \equiv \tilde{\Gamma}(p) \frac{D_l(p_R r)}{D_l(pr)} = \tilde{\Gamma}(p) \frac{1+(p_R r)^2}{1+(pr)^2}$$

the phase shift derivative is given by:

$$rac{\partial \delta(m{p})}{\partial (M_\pi^2)} \simeq rac{1+p_R^4(r^2)'}{4p_R^4}\,M ilde{\Gamma}(m{p})$$

Estimation of r^2 matching LO ChPT at low p:

$$r^2 = rac{1}{g^2 f_\pi^2} rac{M}{M_\pi} + O(M_\pi^0) \, \Rightarrow \, 1 + p_R^4 (r^2)' \, = \, 1 - rac{M \, p_R^4}{2 g^2 f_\pi^2 M_\pi^3} < 0$$

$$\Gamma(p) = \Gamma_R \left(\frac{p}{p_R}\right)^{2l+1} \frac{D_l(p_R r)}{D_l(pr)} \equiv \tilde{\Gamma}(p) \frac{D_l(p_R r)}{D_l(pr)} = \tilde{\Gamma}(p) \frac{1+(p_R r)^2}{1+(pr)^2}$$

the phase shift derivative is given by:

$$rac{\partial \delta(m{
ho})}{\partial (M_\pi^2)} \simeq rac{1+m{
ho}_R^4(r^2)'}{4m{
ho}_R^4}\,M ilde{\Gamma}(m{
ho})$$

Estimation of r^2 matching LO ChPT at low *p*:

$$r^2 = rac{1}{g^2 f_\pi^2} rac{M}{M_\pi} + O(M_\pi^0) \, \Rightarrow \, 1 + p_R^4 (r^2)' \, = \, 1 - rac{M \, p_R^4}{2 g^2 f_\pi^2 M_\pi^3} < 0$$

$$\Gamma(p) = \Gamma_R \left(\frac{p}{p_R}\right)^{2l+1} \frac{D_l(p_R r)}{D_l(pr)} \equiv \tilde{\Gamma}(p) \frac{D_l(p_R r)}{D_l(pr)} = \tilde{\Gamma}(p) \frac{1+(p_R r)^2}{1+(pr)^2}$$

the phase shift derivative is given by:

$$rac{\partial \delta(m{p})}{\partial (M_\pi^2)}\simeq rac{1+m{p}_R^4(r^2)'}{4m{p}_R^4}\,M ilde{\Gamma}(m{p})\,\,ig<0$$
 ,

Estimation of r^2 matching LO ChPT at low *p*:

$$r^2 = rac{1}{g^2 f_\pi^2} rac{M}{M_\pi} + O(M_\pi^0) \Rightarrow 1 + p_R^4 (r^2)' = 1 - rac{M \, p_R^4}{2g^2 f_\pi^2 M_\pi^3} < 0$$

$$\Gamma(p) = \Gamma_R \left(\frac{p}{p_R}\right)^{2l+1} \frac{D_l(p_R r)}{D_l(pr)} \equiv \tilde{\Gamma}(p) \frac{D_l(p_R r)}{D_l(pr)}$$

the phase shift derivative is given by:

$$rac{\partial \delta(oldsymbol{p})}{\partial (M_\pi^2)} \simeq \, rac{1+ oldsymbol{p}_R^4(r^2)'}{4 oldsymbol{p}_R^4} \, M ilde{\Gamma}(oldsymbol{p}) \, < 0$$

The phase shift goes down for low p and near $M_{\pi} = M_{\pi}^{phys}$

Agreement with standard and unitarized ChPT.

Standard and unitarized ChPT phase shifts vs. lattice results

ChPT

J. Nebreda, J.R. Peláez and G. Ríos, Phys. Rev. D 83: 094011(2011) Lattice

J. Dudek et al., Phys.Rev. D 83: 071504 (2011)

K. Sasaki and N. Ishizuka, Phys. Rev. D 78, 014511 (2008)

Scalar I=2 wave - one loop

Jenifer Nebreda, U. Complutense de Madrid

I=2 J=0 phase shift at one loop

M_{π} =139.57 MeV

I=2 J=0 phase shift at one loop

M_{π} =396 MeV

I=2 J=0 phase shift at one loop

M_{π} =420 MeV

I=2 J=0 phase shift at one loop

M_{π} =444 MeV

I=2 J=0 phase shift at one loop

M_{π} =524 MeV

I=2 J=0 phase shift at one loop

M_{π} =524 MeV

Scalar I=2 wave - two loops

Jenifer Nebreda, U. Complutense de Madrid

I=2 J=0 phase shift at two loops

Jenifer Nebreda, U. Complutense de Madrid

D waves are zero at tree level:

- IAM cannot be applied at one or two loops
- one and two-loops amplitudes are only LO and NLO

I=2 J=2 phase shift in standard ChPT M_{π} =139.57 MeV

Jenifer Nebreda, U. Complutense de Madrid

I=2 J=2 phase shift in standard ChPT

I=2 J=2 phase shift in standard ChPT

Jenifer Nebreda, U. Complutense de Madrid

I=2 J=2 phase shift in standard ChPT

Jenifer Nebreda, U. Complutense de Madrid

I=2 J=2 phase shift in standard ChPT

Works up to higher p

No improvement

Scalar and vector mesons dependence on M_{π}

Jenifer Nebreda, U. Complutense de Madrid

Quark mass dependence

Generalization to SU(3) of previous work on $SU(2)^*$.

Elastic channels:

- $\pi\pi \to \pi\pi$: resonances ρ and σ (comparison to SU(2) results)
- $\pi K \rightarrow \pi K$: resonances $K^*(892)$ and κ .

Change of $\hat{m} = \frac{m_u + m_d}{2}$ and $m_s \Rightarrow$

change of
$$M_{\pi}^2$$
, M_{K}^2 , M_{η}^2 , f_{π} , f_{K} , f_{η} .

Applicability in SU(3): $0 < M_{\pi} \lesssim 400 \text{ MeV} \Rightarrow M_{K} \lesssim 600 \text{ MeV}$ (Being optimistic!)

* C. Hanhart, J.R. Pelaez and G. Rios, Phys. Rev. Lett. 100, 152001 (2008)

Jenifer Nebreda, U. Complutense de Madrid

Light vector mesons: ρ and $K^*(892)$
m dependence - Light vector mesons - Mass

- Both masses increase slower than M_{π}
- Agreement with SU(2) analysis (blue line)*

* C. Hanhart, J.R. Pelaez and G. Rios, Phys. Rev. Lett. 100, 152001 (2008)

m dependence - Light vector mesons - Width

C. Hanhart, J.R. Pelaez and G. Rios, Phys. Rev. Lett. 100, 152001 (2008)

Jenifer Nebreda, U. Complutense de Madrid

m dependence - Light vector mesons - Width

Width decrease in accordance with phase space reduction:

$$\Gamma_V = g^2 rac{1}{8\pi} rac{|\mathbf{p}|^3}{M_V^2}$$
 (black lines)

m dependence - Light vector mesons - Coupling

 Coupling to two mesons independent of m̂ (assumption in some lattice works)

m dependence - Light vector mesons - KSFR

Fulfill the KSFR relation for different \hat{m} :

$$g\simeq M_V/2\sqrt{2}f_\pi$$

Light scalar mesons: σ and κ

m dependence - Light scalar mesons - Mass

- Mass split into two branches
- Agreement with SU(2) analysis

* C. Hanhart, J.R. Pelaez and G. Rios, Phys. Rev. Lett. 100, 152001 (2008)

m dependence - Light scalar mesons - Width

C. Hanhart, J.R. Pelaez and G. Rios, Phys. Rev. Lett. 100, 152001 (2008)

Jenifer Nebreda, U. Complutense de Madrid

m dependence - Light scalar mesons - Width

Width decrease not explained by phase space reduction:

$$\Gamma_{\rm S} = g^2 \frac{1}{8\pi} \frac{|\mathbf{p}|}{M_{\rm S}^2}$$

m dependence - Light scalar mesons - Coupling

Strong m dependence of coupling to two mesons

Jenifer Nebreda, U. Complutense de Madrid

Chiral extrapolation of the parameters of the σ ($f_0(600)$), $\kappa(800)$, $\rho(770)$ and $K^*(892)$ resonances increasing \hat{m} .

Vector mesons

Scalar mesons

Jenifer Nebreda, U. Complutense de Madrid

Chiral extrapolation of the parameters of the σ ($f_0(600)$), $\kappa(800)$, $\rho(770)$ and $K^*(892)$ resonances increasing \hat{m} .

Vector mesons

• vector resonances mass grows slower than M_{π} ,

Scalar mesons

Jenifer Nebreda, U. Complutense de Madrid

Chiral extrapolation of the parameters of the σ ($f_0(600)$), $\kappa(800)$, $\rho(770)$ and $K^*(892)$ resonances increasing \hat{m} .

Vector mesons

- vector resonances mass grows slower than M_{π} ,
- coupling to two mesons almost independent of M_{π} ,

Scalar mesons

Chiral extrapolation of the parameters of the σ ($f_0(600)$), $\kappa(800)$, $\rho(770)$ and $K^*(892)$ resonances increasing \hat{m} .

Vector mesons

- vector resonances mass grows slower than M_{π} ,
- coupling to two mesons almost independent of M_{π} ,
- KSFR is well satisfied for different quark masses.

Scalar mesons

Chiral extrapolation of the parameters of the σ ($f_0(600)$), $\kappa(800)$, $\rho(770)$ and $K^*(892)$ resonances increasing \hat{m} .

Vector mesons

- vector resonances mass grows slower than M_{π} ,
- coupling to two mesons almost independent of M_{π} ,
- KSFR is well satisfied for different quark masses.

Scalar mesons

very different behavior from vector mesons: two branches,

Chiral extrapolation of the parameters of the σ ($f_0(600)$), $\kappa(800)$, $\rho(770)$ and $K^*(892)$ resonances increasing \hat{m} .

Vector mesons

- vector resonances mass grows slower than M_{π} ,
- coupling to two mesons almost independent of M_{π} ,
- KSFR is well satisfied for different quark masses.

Scalar mesons

- very different behavior from vector mesons: two branches,
- σ and κ show different quantitative but similar qualitative behavior,

Chiral extrapolation of the parameters of the σ ($f_0(600)$), $\kappa(800)$, $\rho(770)$ and $K^*(892)$ resonances increasing \hat{m} .

Vector mesons

- vector resonances mass grows slower than M_{π} ,
- **coupling to two mesons almost independent of** M_{π} ,
- KSFR is well satisfied for different quark masses.

Scalar mesons

- very different behavior from vector mesons: two branches,
- σ and κ show different quantitative but similar qualitative behavior,
- coupling to two mesons shows stronger M_{π} dependence.

We have presented recent results for the phase shifts M_{π} dependence :

Standard ChPT

Unitarized ChPT

Jenifer Nebreda, U. Complutense de Madrid

We have presented recent results for the phase shifts M_{π} dependence :

Standard ChPT

very soft M_{π} dependence once threshold is "subtracted",

We have presented recent results for the phase shifts M_{π} dependence :

Standard ChPT

- very soft M_{π} dependence once threshold is "subtracted",
- surprising decrease of phase in vector channel,

We have presented recent results for the phase shifts M_{π} dependence :

Standard ChPT

- very soft M_{π} dependence once threshold is "subtracted",
- surprising decrease of phase in vector channel,
- S2 wave: agreement with lattice only at very low *p*,

We have presented recent results for the phase shifts M_{π} dependence :

Standard ChPT

- very soft M_{π} dependence once threshold is "subtracted",
- surprising decrease of phase in vector channel,
- S2 wave: agreement with lattice only at very low *p*,
- D2 wave: fair agreement with lattice at 1 loop, spoilt at 2 loops.

We have presented recent results for the phase shifts M_{π} dependence :

Standard ChPT

- very soft M_{π} dependence once threshold is "subtracted",
- surprising decrease of phase in vector channel,
- S2 wave: agreement with lattice only at very low *p*,
- D2 wave: fair agreement with lattice at 1 loop, spoilt at 2 loops.

Unitarized ChPT

S2 wave: better agreement with lattice at high p,

We have presented recent results for the phase shifts M_{π} dependence :

Standard ChPT

- very soft M_{π} dependence once threshold is "subtracted",
- surprising decrease of phase in vector channel,
- S2 wave: agreement with lattice only at very low *p*,
- D2 wave: fair agreement with lattice at 1 loop, spoilt at 2 loops.

- **S2** wave: better agreement with lattice at high p,
- similar results at one and two loops,

We have presented recent results for the phase shifts M_{π} dependence :

Standard ChPT

- very soft M_{π} dependence once threshold is "subtracted",
- surprising decrease of phase in vector channel,
- S2 wave: agreement with lattice only at very low p,
- D2 wave: fair agreement with lattice at 1 loop, spoilt at 2 loops.

- S2 wave: better agreement with lattice at high p,
- similar results at one and two loops,
- reconciles ρ ChPT behavior with naive expectation,

We have presented recent results for the phase shifts M_{π} dependence :

Standard ChPT

- very soft M_{π} dependence once threshold is "subtracted",
- surprising decrease of phase in vector channel,
- S2 wave: agreement with lattice only at very low *p*,
- D2 wave: fair agreement with lattice at 1 loop, spoilt at 2 loops.

- **S2** wave: better agreement with lattice at high p,
- similar results at one and two loops,
- **reconciles** ρ ChPT behavior with naive expectation,
- bound states seen as 2π jump in phase shift (Levinson's).

We have presented recent results for the phase shifts M_{π} dependence *:

Standard ChPT

- very soft M_{π} dependence once threshold is "subtracted",
- surprising decrease of phase in vector channel,
- S2 wave: agreement with lattice only at very low p,
- D2 wave: fair agreement with lattice at 1 loop, spoilt at 2 loops.

Unitarized ChPT

- **S2** wave: better agreement with lattice at high p,
- similar results at one and two loops,
- bound states seen as 2π jump in phase shift (Levinson's).

*C. Hanhart, J.R. Pelaez and G. Rios, Phys. Rev. Lett. 100, 152001 (2008)

$m_{\rm s}$ dependence of σ , ρ , κ and $K^*(892)$

Jenifer Nebreda, U. Complutense de Madrid

Light vector mesons: ρ and $K^*(892)$

m_s dependence - Light vector mesons - Mass & Width

Jenifer Nebreda, U. Complutense de Madrid

m_s dependence - Light vector mesons - Mass & Width

Jenifer Nebreda, U. Complutense de Madrid

m_s dependence - Light vector mesons - Coupling

Coupling to two mesons constant

m_s dependence - Light vector mesons - KSFR

KSFR relation well satisfied for different m_s

Light scalar mesons: σ and κ

m_s dependence - Light scalar mesons - Mass & Width

Jenifer Nebreda, U. Complutense de Madrid
m_s dependence - Light scalar mesons - Mass & Width

Jenifer Nebreda, U. Complutense de Madrid

Quark mass dependence of light resonances and phase shifts

m_s dependence - Light scalar mesons - Coupling

