Roy–Steiner equations for $\gamma\gamma ightarrow \pi\pi$

Martin Hoferichter^{1,2} Daniel R. Phillips² Carlos Schat^{2,3}

¹Helmholtz-Institut für Strahlen- und Kernphysik (Theorie) and Bethe Center for Theoretical Physics, Universität Bonn

²Institute of Nuclear and Particle Physics and Department of Physics and Astronomy, Ohio University

³CONICET - Departamento de Física, FCEyN, Universidad de Buenos Aires

Munich, June 14, 2011

Bonn-Cologne Graduate School of Physics and Astronomy

1 Roy equations for $\pi\pi$ scattering

2 Roy–Steiner equations for $\gamma\gamma \rightarrow \pi\pi$

3 Muskhelishvili–Omnès solution for $\gamma\gamma o \pi\pi$

Motivation

Roy equations = coupled system of partial wave dispersion relations + crossing symmetry + unitarity

- Roy equations respect analyticity, unitarity, and crossing symmetry
- Partial wave dispersion relations in combination with unitarity (and chiral symmetry) allow for high-precision studies of low-energy processes
 - ππ scattering: Roy (1971), Ananthanarayan et al. (2001), García-Martín et al. (2011)
 - πK scattering: Büttiker et al. (2004)

Motivation

Roy equations = coupled system of partial wave dispersion relations + crossing symmetry + unitarity

- Roy equations respect analyticity, unitarity, and crossing symmetry
- Partial wave dispersion relations in combination with unitarity (and chiral symmetry) allow for high-precision studies of low-energy processes
 - $\pi\pi$ scattering: Roy (1971), Ananthanarayan et al. (2001), García-Martín et al. (2011)
 - πK scattering: Büttiker et al. (2004)
- Application: determination of the pole position of the σ -meson
- ππ Roy equations + Chiral Perturbation Theory (ChPT) Caprini et al. (2006)

$$M_{\sigma} = 441^{+16}_{-8} \text{MeV}$$
 $\Gamma_{\sigma} = 544^{+18}_{-25} \text{MeV}$

• $\gamma\gamma \rightarrow \pi\pi$ provides alternative access to the $\sigma \Rightarrow$ two-photon width $\Gamma_{\sigma\gamma\gamma}$

• <u>Aim</u>: constrain $\Gamma_{\sigma\gamma\gamma}$ at a similar level of rigor as M_{σ} and $\Gamma_{\sigma\gamma}$

Roy equations for $\pi\pi$ scattering

• Start from twice-subtracted dispersion relation at fixed Mandelstam t

$$T(s,t) = c(t) + \frac{1}{\pi} \int_{4M_{\pi}^2}^{\infty} ds' \bigg\{ \frac{s^2}{s'^2(s'-s)} + \frac{u^2}{s'^2(s'-u)} \bigg\} \operatorname{Im} T(s',t)$$

- Determine subtraction functions c(t) from crossing symmetry
- Partial wave projection (angular momentum J and isospin I)

 \Rightarrow coupled system of integral equations for partial waves $t_J^l(s)$

$$t_{J}^{l}(s) = k_{J}^{l}(s) + \sum_{l'=0}^{2} \sum_{J'=0}^{\infty} \int_{4M_{\pi}^{2}}^{\infty} ds' K_{JJ'}^{ll'}(s,s') \operatorname{Im} t_{J'}^{l'}(s')$$

• Kernel functions $K_{JJ'}^{II'}$ known analytically

$$\mathcal{K}_{JJ'}^{II'}(s,s') = \frac{\delta_{JJ'}\delta_{II'}}{s'-s-i\varepsilon} + \bar{\mathcal{K}}_{JJ'}^{II'}(s,s')$$

$$t_{J}^{l}(s) = k_{J}^{l}(s) + \sum_{l'=0}^{2} \sum_{J'=0}^{\infty} \int_{4M_{\pi}^{2}}^{\infty} ds' K_{JJ'}^{ll'}(s,s') \operatorname{Im} t_{J'}^{l'}(s')$$

- Free parameters: $\pi\pi$ scattering lengths in $k_J^l(s)$ ("subtraction constants")
 - \Rightarrow Matching to ChPT Colangelo et al. (2001)
- Use elastic unitarity to obtain a coupled integral equation for the phase shifts

$$\operatorname{Im} t_{J}^{l}(s) = \sigma(s)|t_{J}^{l}(s)|^{2}$$

$$t_{J}^{l}(s) = \frac{e^{2i\delta_{J}^{l}(s)} - 1}{2i\sigma(s)}$$

$$\sigma(s) = \sqrt{1 - \frac{4M_{\pi}^{2}}{s}}$$

1

1

Roy–Steiner equations for $\gamma\gamma \rightarrow \pi\pi$

• Kinematics:
$$s = (p_1 + q_1)^2$$
, $t = (q_1 - q_2)^2$, $u = (q_1 - p_2)^2$

• Amplitude for
$$\gamma \pi \rightarrow \gamma \pi$$
:

 $F_{\lambda_{1}\lambda_{2}}(s,t) = \varepsilon_{\mu}(q_{1},\lambda_{1})\varepsilon_{\nu}^{*}(q_{2},\lambda_{2})W^{\mu\nu}(s,t) \qquad \Delta_{\mu} = p_{1\mu} + p_{2\mu}$ $W_{\mu\nu}(s,t) = A(s,t)\left(\frac{t}{2}g_{\mu\nu} + q_{2\mu}q_{1\nu}\right) + B(s,t)\left(2t\Delta_{\mu}\Delta_{\nu} - (s-u)^{2}g_{\mu\nu} + 2(s-u)(\Delta_{\mu}q_{1\nu} + \Delta_{\nu}q_{2\mu})\right)$

- Use dispersion relations for A(s,t) and B(s,t)
 - ⇒ constraints from gauge invariance automatically fulfilled
- Crossing symmetry couples $\gamma\gamma \rightarrow \pi\pi$ and $\gamma\pi \rightarrow \gamma\pi$ (s-a)(u-a) = (s'-a)(u'-a)
 - \Rightarrow use hyperbolic dispersion relations Hite, Steiner (1973)

$$A(s,t) = \frac{1}{M_{\pi}^2 - s} + \frac{1}{M_{\pi}^2 - u} - \frac{1}{M_{\pi}^2 - a} + \frac{1}{\pi} \int_{4M_{\pi}^2}^{\infty} dt' \frac{\operatorname{Im} A(t', Z'_t)}{t' - t} + \frac{1}{\pi} \int_{M_{\pi}^2}^{\infty} ds' \operatorname{Im} A(s', t') \left(\frac{1}{s' - s} + \frac{1}{s' - u} - \frac{1}{s' - a}\right)$$

Roy–Steiner equations for $\gamma\gamma \rightarrow \pi\pi$

• Coupled system for $\gamma\gamma \rightarrow \pi\pi$ partial waves $h_{J,\pm}^{l}(t)$ and $\gamma\pi \rightarrow \gamma\pi$ partial waves $f_{J,\pm}^{l}(s)$ (photon helicities \pm), e.g.

$$h'_{J,-}(t) = \tilde{N}_{J}^{-}(t) + \frac{1}{\pi} \int_{M_{\pi}^{2}}^{\infty} \mathrm{d}s' \sum_{J'=1}^{\infty} \tilde{G}_{JJ'}^{-+}(t,s') \mathrm{Im} f'_{J',+}(s') + \frac{1}{\pi} \int_{4M_{\pi}^{2}}^{\infty} \mathrm{d}t' \sum_{J'} \tilde{K}_{JJ'}^{--}(t,t') \mathrm{Im} h'_{J',-}(t')$$

Subtraction constants pion polarizabilities

$$\pm \frac{2\alpha}{M_{\pi}t} \hat{F}_{\pm\pm}(s = M_{\pi}^2, t) = \frac{\alpha_1 \pm \beta_1}{12} + \frac{t}{12} (\alpha_2 \pm \beta_2) + \mathcal{O}(t^2)$$

Transition between isospin and particle basis

$$\begin{pmatrix} h_{J,\pm}^{\pi^{\pm}} \\ h_{J,\pm}^{\pi^{0}} \end{pmatrix} = \begin{pmatrix} \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{6}} \\ \frac{1}{\sqrt{3}} & -\sqrt{\frac{2}{3}} \end{pmatrix} \begin{pmatrix} h_{J,\pm}^{0} \\ h_{J,\pm}^{2} \end{pmatrix} \quad \text{etc.}$$

Roy–Steiner equations for $\gamma\gamma \rightarrow \pi\pi$

$$h_{J,-}^{l}(t) = \tilde{N}_{J}^{-}(t) + \frac{1}{\pi} \int_{M_{\pi}^{2}}^{\infty} \mathrm{d}s' \sum_{J'=1}^{\infty} \tilde{G}_{JJ'}^{-+}(t,s') \mathrm{Im} f_{J',+}^{l}(s') + \frac{1}{\pi} \int_{4M_{\pi}^{2}}^{\infty} \mathrm{d}t' \sum_{J'} \tilde{K}_{JJ'}^{--}(t,t') \mathrm{Im} h_{J',-}^{l}(t')$$

• Unitarity relation is linear in $h'_{J,\pm}(t)$

$$\operatorname{Im} h_{J,\pm}^{I}(t) = \sigma(t) h_{J,\pm}^{I}(t) t_{J}^{I}(t)^{*}$$

 \Rightarrow less restrictive than for $\pi\pi$ scattering

• "Watson's theorem": phase of $h'_{J,\pm}(t)$ equals $\delta'_J(t)$ Watson (1954)

 \Rightarrow Muskhelishvili–Omnès problem for $h'_{J,\pm}(t)$ Muskhelishvili (1953), Omnès (1958)

• Equations are valid up to $t_{max} = (1 \text{ GeV})^2$ (assuming Mandelstam analyticity)

Muskhelishvili–Omnès solution for $\gamma\gamma \rightarrow \pi\pi$

- Truncate the system at J = 2
- Input for Im f^l_{J,±}(s): approximate multi-pion states
 by sum of resonances García-Martín, Moussallam (2010)

• Assume $h'_{J,\pm}(t)$ to be known above $t_{\rm m} = (0.98 \,{\rm GeV})^2$

⇒ Muskhelishvili–Omnès problem with finite matching point Büttiker et al. (2004)

• Solution in terms of Omnès functions, e.g. for $h_{0,+}^{l}(t)$ (one subtraction)

$$\begin{split} h_{0,+}^{l}(t) &= \Delta_{0,+}^{l}(t) + \frac{M_{\pi}}{2\alpha}(\alpha_{1} - \beta_{1})^{l} t\Omega_{0}^{l}(t) \\ &+ \frac{t^{2}\Omega_{0}^{\prime}(t)}{\pi} \Biggl\{ \int_{4M_{\pi}^{2}}^{t_{m}} \mathrm{d}t^{\prime} \frac{\sin \delta_{0}^{l}(t^{\prime})\Delta_{0,+}^{\prime}(t^{\prime})}{t^{\prime 2}(t^{\prime} - t)|\Omega_{0}^{l}(t^{\prime})|} + \int_{t_{m}}^{\infty} \mathrm{d}t^{\prime} \frac{\mathrm{Im} \, h_{0,+}^{l}(t^{\prime})}{t^{\prime 2}(t^{\prime} - t)|\Omega_{0}^{l}(t^{\prime})|} \Biggr\} \end{split}$$

with the Omnès function

$$\Omega_{J}^{\prime}(t) = \exp\left\{\frac{t}{\pi}\int_{4M_{\pi}^{2}}^{t_{m}} \mathrm{d}t^{\prime}\frac{\delta_{J}^{\prime}(t^{\prime})}{t^{\prime}(t^{\prime}-t)}\right\}$$

$$h_{0,+}^{l}(t) = \Delta_{0,+}^{l}(t) + \frac{M_{\pi}}{2\alpha} (\alpha_{1} - \beta_{1})^{t} \Omega_{0}^{l}(t) + \frac{t^{2} \Omega_{0}^{l}(t)}{\pi} \left\{ \int_{4M_{\pi}^{2}}^{t_{m}} dt' \frac{\sin \delta_{0}^{l}(t') \Delta_{0,+}^{l}(t')}{t'^{2}(t'-t) |\Omega_{0}^{l}(t')|} + \int_{t_{m}}^{\infty} dt' \frac{\operatorname{Im} h_{0,+}^{l}(t')}{t'^{2}(t'-t) |\Omega_{0}^{l}(t')|} \right\}$$

• $\Delta'_{0,+}(t)$ describes left-hand cut

$$\begin{split} \Delta_{0,+}^{l}(t) &= N_{0,+}^{l}(t) + \frac{1}{\pi} \int_{4M_{\pi}^{2}}^{\infty} \mathrm{d}t' \left(\tilde{K}_{02}^{++}(t,t') \mathrm{Im} \, h_{2,+}^{l}(t') + \tilde{K}_{02}^{+-}(t,t') \mathrm{Im} \, h_{2,-}^{l}(t') \right) \\ &+ \frac{1}{\pi} \int_{M_{\pi}^{2}}^{\infty} \mathrm{d}s' \sum_{j'=1,2} \left(\tilde{G}_{0,j'}^{++}(t,s') \mathrm{Im} \, f_{j',+}^{l}(s') + \tilde{G}_{0,j'}^{+-}(t,s') \mathrm{Im} \, f_{j',-}^{l}(s') \right) \end{split}$$

Input

- Above $t_{\rm m}$ use Breit–Wigner description of $f_2(1270)$
- $\pi\pi$ phases: Caprini et al. (in preparation), García-Martín et al. (2011)

• If $\delta'_{l}(t_{\rm m}) < 0$, can derive sum rules for pion polarizabilities, e.g.

$$0 = \frac{M_{\pi}}{2\alpha} (\alpha_1 - \beta_1)^{l=2} t_m (1 - t_m \dot{\Omega}_0^2(0)) + \frac{M_{\pi}}{24\alpha} (\alpha_2 - \beta_2)^{l=2} t_m^2 + \frac{t_m^3}{\pi} \left\{ \int_{4M_{\pi}^2}^{t_m} dt' \frac{\sin \delta_0^2(t') \Delta_{0,+}^2(t')}{t'^3(t' - t_m) |\Omega_0^2(t')|} + \int_{t_m}^{\infty} dt' \frac{\operatorname{Im} h_{0,+}^2(t')}{t'^3(t' - t_m) |\Omega_0^2(t')|} \right\}$$

• Gasser et al. (2006): $(\alpha_2 - \beta_2)^{\pi^{\pm}}$ strongly dependent on poorly known low-energy constants $\Rightarrow (\alpha_2 - \beta_2)^{\pi^{\pm}} = 16.2[21.6] \cdot 10^{-4} \text{fm}^5$ for two sets of LECs

• Sum rule + ChPT prediction for $(\alpha_1 - \beta_1)^{\pi^{\pm}, \pi^0}$ and $(\alpha_2 - \beta_2)^{\pi^0}$ Gasser et al. (2005, 2006) yields

$$(\alpha_2 - \beta_2)^{\pi^{\pm}} = (15.3 \pm 3.7) \cdot 10^{-4} \text{fm}^5$$

Muskhelishvili–Omnès solution for $\gamma\gamma \rightarrow \pi\pi$: cross section for $\gamma\gamma \rightarrow \pi^0\pi^0$

Pion polarizabilities

- ChPT: Gasser et al. (2005, 2006) + sum rule
- GMM: two-channel Omnès fit to $\gamma\gamma
 ightarrow \pi\pi$ data García-Martín, Moussallam (2010)

Results for $\Gamma_{\sigma\gamma\gamma}$: correlation plot

• Obtain $\Gamma_{\sigma\gamma\gamma}$ by analytic continuation to the σ pole

\Rightarrow Correlation between $\Gamma_{\sigma\gamma\gamma}$ and pion polarizabilities

Results for $\Gamma_{\sigma\gamma\gamma}$: Roy–Steiner equations + ChPT

Combine correlation plot with ChPT predictions for pion polarizabilities

Roy-Steiner equations + ChPT

$$\Gamma_{\sigma\gamma\gamma} = (1.7 \pm 0.4) \text{keV}$$

M. Hoferichter (HISKP & BCTP, Uni Bonn)

Roy–Steiner equations for $\gamma\gamma \rightarrow \pi\pi$

- Construction of Roy–Steiner equations for $\gamma\gamma \rightarrow \pi\pi$
- Coupling between S- and D-waves
- Solution of Muskhelishvili–Omnès problem
- Sum rule to provide error estimate for chiral prediction of $(\alpha_2 \beta_2)^{\pi^{\pm}}$
- Correlation between $\Gamma_{\sigma\gamma\gamma}$ and pion polarizabilities \Rightarrow COMPASS

Sum rule

• Omnès function behaves as $|\Omega'_J(t)| \sim |t_m - t|^{\frac{\delta'_J(t_m)}{\pi}} \Rightarrow \text{If } \delta'_J(t_m) < 0, \ \Omega'_J(t_m)^{-1} = 0$ • Multiply

$$b_{0,+}^{2}(t) = \Delta_{0,+}^{2}(t) + \frac{M_{\pi}}{2\alpha} (\alpha_{1} - \beta_{1})^{t-2} t \Omega_{0}^{2}(t) + \frac{t^{2} \Omega_{0}^{2}(t)}{\pi} \left\{ \int_{4M_{\pi}^{2}}^{t_{m}} dt' \frac{\sin \delta_{0}^{2}(t') \Delta_{0,+}^{2}(t')}{t'^{2}(t'-t) |\Omega_{0}^{2}(t')|} + \int_{t_{m}}^{\infty} dt' \frac{\ln h_{0,+}^{2}(t')}{t'^{2}(t'-t) |\Omega_{0}^{2}(t')|} \right\}$$

with $\Omega_0^2(t)^{-1}$ and then put $t = t_m$

$$0 = \frac{M_{\pi}}{2\alpha} (\alpha_1 - \beta_1)^{l=2} t_{\rm m} + \frac{t_{\rm m}^2}{\pi} \left\{ \int_{4M_{\pi}^2}^{t_{\rm m}} {\rm d}t' \frac{\sin \delta_0^2(t') \Delta_{0,+}^2(t')}{t^2(t'-t_{\rm m}) |\Omega_0^2(t')|} + \int_{t_{\rm m}}^{\infty} {\rm d}t' \frac{{\rm Im} h_{0,+}^2(t')}{t^2(t'-t_{\rm m}) |\Omega_0^2(t')|} \right\}$$

Integrals and individual contributions

	full	$a ightarrow \infty$	no resonances		$(\alpha_1 - \beta_1)^{I=2}$	$(\alpha_2 - \beta_2)^{l=2}$	total
1 ⁽²⁾ , CCL	3.45	3.58	2.08	ChPT	$1.03 \!\pm\! 0.14$	-4.29 ± 0.78	0.18 ± 0.85
<i>I</i> ⁽²⁾ , GKPRY	3.40	3.53	2.03	GMM	0.80 ± 0.14	-3.49 ± 0.60	0.76 ± 0.68

Input above $t_{\rm m}$

• Cross section above t_m dominated by $f_2(1270) \Rightarrow$ Breit–Wigner description

$$\mathscr{L}_{f_2\pi\pi} = C_{f_2}^{\pi} f_2^{\mu\nu} \partial_{\mu} \pi \partial_{\nu} \pi \qquad \mathscr{L}_{f_2\gamma\gamma} = e^2 C_{f_2}^{\gamma} f_2^{\mu\nu} F_{\mu\alpha} F_{\nu}^{\alpha}$$

• Amounts to putting all partial waves to zero except for $h_2^0(t)$

$$h_{2,-}^{0}(t) = \frac{C_{f_{2}}^{\pi}C_{f_{2}}^{\gamma}}{5\sqrt{6}} \frac{t^{2}\sigma(t)}{t - m_{f_{2}}^{2} + im_{f_{2}}\Gamma_{f_{2}}} = \frac{C_{f_{2}}^{\pi}C_{f_{2}}^{\gamma}}{5\sqrt{6}} \frac{m_{f_{2}}^{4}\sigma(m_{f_{2}}^{2})}{t - m_{f_{2}}^{2} + im_{f_{2}}\Gamma_{f_{2}}} + \text{background}$$

• Need background for charged channel \Rightarrow taking Born terms + background from f_2

works satisfactorily Drechsel et al. (1999)

• On the second Riemann sheet near the σ -pole t_{σ} we may write

$$h_{0,+,\mathrm{II}}^{0}(t) = \frac{g_{\sigma\pi\pi}g_{\sigma\gamma\gamma}}{t_{\sigma}-t} \qquad 32\pi t_{0,\mathrm{II}}^{0}(t) = \frac{g_{\sigma\pi\pi}^{2}}{t_{\sigma}-t} \qquad t_{\sigma} = \left(M_{\sigma}-i\frac{\Gamma_{\sigma}}{2}\right)^{2}$$

• Continuity at the cut relates amplitudes on the first and second Riemann sheet

$$h_{0,+,II}^{0}(t) = (1 - 2i\sigma(t)t_{0,II}^{0}(t))h_{0,+,I}^{0}(t)$$

• Two-photon width $\Gamma_{\sigma\gamma\gamma}$ thus follows from

$$\frac{g_{\sigma\gamma\gamma}^2}{g_{\sigma\pi\pi}^2} = -\left(\frac{\sigma(t_{\sigma})}{16\pi}\right)^2 (h_{0,+,l}^0(t_{\sigma}))^2 \qquad \Gamma_{\sigma\gamma\gamma} = \frac{\pi\alpha^2 |g_{\sigma\gamma\gamma}|^2}{M_{\sigma}}$$

S- and D-wave coupling

