Quarkonia Measurements with ALICE at the LHC

Frederick Kramer

for the ALICE Collaboration IKF, Goethe-Universität Frankfurt

Hadron 2011 Conference, Munich, June 16th, 2011

Introduction	${\sf J}/\psi$ in pp Collisions	${\sf J}/\psi$ in Pb-Pb Collisions	Summary & Outlook
000	00000	000	00

Introduction

 ${\rm J}/\psi$ in pp Collisions Differential Cross Sections Multiplicity Dependence

 ${\rm J}/\psi$ in Pb-Pb Collisions Nuclear Modification Factors

Introduction	J/ψ in pp Collisions	${\sf J}/\psi$ in Pb-Pb Collisions	Summary & Outlook
000	00000	000	00

Introduction

Sice motivation: \mathbf{y}/ϕ in fleavy for considers

Quark-Gluon Plasma (QGP): Deconfined state of strongly interacting matter

- Melting due to Debye screening $\downarrow \downarrow$
- \blacktriangleright Recombination of uncorr. $Q\bar{Q}$ $\uparrow\uparrow$
- Thermal production (at LHC) $\uparrow\uparrow$

Quark-Gluon Plasma (QGP): Deconfined state of strongly interacting matter

- Melting due to Debye screening $\downarrow \downarrow$
- \blacktriangleright Recombination of uncorr. $Q\bar{Q}$ $\uparrow\uparrow$
- Thermal production (at LHC) $\uparrow\uparrow$

Physics Motivation: \mathbf{J}/ψ in Heavy-Ion Collisions

Quark-Gluon Plasma (QGP): Deconfined state of strongly interacting matter

- Melting due to Debye screening $\downarrow \downarrow$
- \blacktriangleright Recombination of uncorr. $Q\bar{Q}$ $\uparrow\uparrow$
- Thermal production (at LHC) $\uparrow\uparrow$

Physics Motivation: J/ψ in Heavy-Ion Collisions

Quark-Gluon Plasma (QGP): Deconfined state of strongly interacting matter

QGP induced effects: \rightarrow **AA**

- Melting due to Debye screening $\downarrow \downarrow$
- \blacktriangleright Recombination of uncorr. $Q\bar{Q}$ $\uparrow\uparrow$
- Thermal production (at LHC) $\uparrow\uparrow$
 - Cold nuclear matter effects: \rightarrow **pA**
 - Nuclear absorption (small at LHC) $\downarrow\downarrow$
 - Shadowing (depending on x) $\downarrow\downarrow\uparrow\uparrow\uparrow$
 - Direct Quarkonia production + feed down $(J/\psi) \rightarrow \mathbf{pp}$

Quarkonia in heavy-ion collisions - probe of deconfinement

Frederick Kramer

Quarkonia Measurements with ALICE at the LHC

- Colour Singlet Model (CSM)
- Non-Relativistic QCD approach (NRQCD)
- Colour Evaporation Model (CEM)

• Polarization parameter $\alpha = \frac{\sigma_T - 2\sigma_L}{\sigma_T + 2\sigma_L}$

Elementary production mechanisms not well understood pp: crucial baseline for Pb-Pb

Frederick Kramer

Quarkonia Measurements with ALICE at the LHC

Introduction	J/ψ in pp Collisions	J/ψ in Pb-Pb Collisions	Summary & Outlook
000			
The ALICE	Experiment		

 \sim 1000 members 116 institutes, 33 countries

$$J/\psi \rightarrow e^+e^-$$

$$|y| < 0.9 \quad p_t > 0$$

$$TPC, ITS$$

$$J/\psi \rightarrow \mu^+\mu^-$$

$$2.5 \le u \le 4.0 \quad p_t \ge 0$$

Muon Spectrometer

Introduction	J/ψ in pp Collisions	J/ψ in Pb-Pb Collisions	Summary & Outlook

J/ψ in pp Collisions

Signal: Bin counting

Quarkonia Measurements with ALICE at the LHC

Frederick Kramer

[ALICE: arXiv:1105.0380], [CMS: arXiv:1011.4193], [ATLAS: arXiv:1104.3038], [LHCb: arXiv:1103.0423]

 p_{t} spectra in good agreement with other LHC experiments

Frederick Kramer

Quarkonia Measurements with ALICE at the LHC

 $d^2\sigma/dp_t dy$

Differential Cross Sections - 2.76 & 7 TeV

Good agreement of $d^2\sigma/dp_t dy$ with NLO NRQCD calculations

[M.L.Mangano: Nucl. Phys. B373 (1992) 295]

- ALICE mid-rapidity data follows trend of cross section vs. \sqrt{s}
- ► NLO pQCD dσ_{cc}/dy prediction scaled to match CDF data

• $\langle p_{\rm t}^2 \rangle$ extracted from fits to the $p_{\rm t}$ differential distributions

• Approximately logarithmic increase with \sqrt{s}

Frederick Kramer

10

s1/2

 $Y_{U_{2b}}^{R}$: Yield in multiplicity bin over yield per inelastic pp collision

Approximately linear increase with charged particle density Indication for multiple parton interactions

Frederick Kramer

Introduction	J
	C

 ψ in pp Collisions

Summary & Outlook

${\rm J}/\psi$ in Pb-Pb Collisions

- ► Background: Track rotation
 - ► Rotate one track by a random angle around φ
- ► Signal: Bin counting Frederick Kramer

 Fit of Crystal-Ball function (signal) + 2 exponentials (background)

Introduction	J/ψ in pp Collisions	J/ψ in Pb-Pb Collisions	Summary & Outlook
		000	
Inclusive I	/ alt D		

$$R_{\rm AA} = \frac{Y_{\rm Pb-Pb}}{\langle N_{\rm coll} \rangle \cdot Y_{\rm pp}}$$

- Bars: Statistical errors
- ► Boxes:
 - Centrality-dependent systematic uncertainties
- Filled box: Common systematic uncertainties
- Not corrected for feed-down from B decay

Strong suppression already at peripheral collisions

Introduction	J/ψ in pp Collisions	J/ψ in Pb-Pb Collisions	Summary & Outlook
		000	
Inclusivo	$ a , \mathbf{P}$		

$$R_{\rm AA} = \frac{Y_{\rm Pb-Pb}}{\langle N_{\rm coll} \rangle \cdot Y_{\rm pp}}$$

- ► Bars: Statistical errors
- ► Boxes:

Centrality-dependent systematic uncertainties

- Filled box: Common systematic uncertainties
- Not corrected for feed-down from B decay

Large uncertainties of shadowing prediction - pA data crucial

Introduction	${\sf J}/\psi$ in pp Collisions	J/ψ in Pb-Pb Collisions
		000

Summary & Outlook

Inclusive $J/\psi R_{AA}$

$$R_{\rm AA} = \frac{Y_{\rm Pb-Pb}}{\langle N_{\rm coll} \rangle \cdot Y_{\rm pp}}$$

- Bars: Statistical errors
- Boxes:

Centrality-dependent systematic uncertainties

- Filled box: Common systematic uncertainties
- Not corrected for feed-down from B decay

Less suppression in central events at LHC than at RHIC

Weak centrality dependence of $R_{\rm CP}$

 $R_{\rm CP}$ of most central collisions larger at forward rapidities (ALICE) than at central rapidity & high $p_{\rm t}$ (ATLAS)

Frederick Kramer

Quarkonia Measurements with ALICE at the LHC

Challenging analysis in e^+e^- at mid-rapidity: Still large errors

Frederick Kramer

Introduction	J/ψ in pp Collisions	${\sf J}/\psi$ in Pb-Pb Collisions	Summary & Outlook
000	00000	000	00

Summary & Outlook

Introduction	J/ψ in pp Collisions	${f J}/\psi$ in Pb-Pb Collisions	Summary & Outlook ●○
Summary			

- ► pp collisions:
 - ▶ ALICE has measured the inclusive J/ ψ production in $\sqrt{s} = 7$ and 2.76 TeV pp collisions in e^+e^- and $\mu^+\mu^-$
 - ► Results are in good agreement with NLO NRQCD calculations
 - \blacktriangleright The inclusive ${\rm J}/\psi$ yield shows a linear increase with the multiplicity
- Pb-Pb collisions:
 - ► The inclusive J/ ψ $R_{\rm AA}$ and $R_{\rm CP}$ have been presented as a function of collision centrality
 - ► J/ ψ R_{AA} larger at LHC (2.5 < y < 4.0) than at RHIC in 1.2 < y < 2.2; closer to RHIC at |y| < 0.35
 - ▶ J/ ψ $R_{\rm CP}$ larger at ALICE (2.5 < y < 4.0) than at ATLAS (|y| < 2.5, $p_{\rm t} > 6.5 GeV$) in central collisions
- Unique at LHC for ALICE: $p_{\mathrm{t}}^{\mathrm{J}/\psi}$ reach down to $0~\mathrm{GeV}/c$

Introduction	J/ψ in pp Collisions	J/ψ in Pb-Pb Collisions	Summary & Outlook ○●
Outlook			

- Polarization measurements
- Measurement of secondary ${\sf J}/\psi$
- ► Transition Radiation Detector as trigger and to improve PID

Backup

Backup - \mathbf{J}/ψ from B Decay

 ${
m c} au\sim 500\mu{
m m}
ightarrow$ likely to have a displaced vertex

B fraction: Simultaneous fit of inv. mass + pseudo proper decay length

$$x = L_{\rm xy} \frac{M_{\rm J/\psi}}{p_{\rm t}}$$

- Measurement possible at central rapidity due to excellent impact parameter resolution ($\sigma_{r\phi} < 75 \mu m$ for $p_t > 1 \text{GeV}/c$)
- First estimation ongoing, high statistics sample collected in 2011 should allow for a precise measurement

Frederick Kramer

Backup - J/ ψ Polarization

- Important observable to test theory
- $\blacktriangleright\,$ 2010 7 TeV pp statistics allow determination of full angular distribution of J/ ψ decay muons
- \blacktriangleright Expected statistical error of the polarization parameter < 0.2 for 3 $p_{\rm t}$ bins

Frederick Kramer

Quarkonia Measurements with ALICE at the LHC

Backup - Contributions to J/ψ Yield

 \sim 1000 members 116 institutes, 33 countries

Time Projection Chamber

$$J/\psi \to e^+e^-$$

|y| < 0.9 $p_{\rm t} > 0$

Δp_t/p_t 10 at 10 GeV/c 10-2 ALICE performance work in progress Dec. 2009 10 p, (GeV/c) 200 FPC dE/dx (a.u.) pp @ √s = 7 TeV 180 160 140 120 100 80 60 40 10 p (GeV/c)

- ► Main tracking device
- ► PID of charged particles

Quarkonia Measurements with ALICE at the LHC

Frederick Kramer

Inner Tracking System

 $J/\psi \rightarrow e^+e^-$

 $|y| < 0.9 \quad p_{\rm t} > 0$

- ► 3 × 2 layers of silicon detectors: pixel, drift, strip
- Primary + secondary vertices
- Improve momentum measurement

Forward Muon Spectrometer

- Absorber
 - + beam shield
 - + filter

protect from hadrons

- ► 10 plane tracking system
 - ► 4 plane trigger system
 - Dipole magnet: momentum determination

 $J/\psi \rightarrow \mu^+\mu^-$

2.5 < y < 4.0 $p_{\rm t} > 0$

Frederick Kramer

V0

- Minimum bias trigger together with the ITS
- V0 amplitude: Centrality selection in Pb-Pb

${\rm J}/\psi$ in pp Collisions - Run Statistics

Triggers:

- e^+e^- : minimum bias interaction trigger
- $\mu^+\mu^-$: forward muon in coincidence with minimum bias trigger

Results are based on:

Energy (TeV)	LHC period	Integrated Luminosity (nb^{-1})	
		${\rm J}/\psi \to e^+e^-$	${\rm J}/\psi \to \mu^+\mu^-$
7	2010	3.9	15.6
2.76	2011	1.1	20.2

\mathbf{J}/ψ in Pb-Pb Collisions - Run Statistics

Trigger:

Minimum bias interaction trigger

Results are based on:

Energy (TeV)	LHC period	Integrated Luminosity (μb^{-1})
2.76	2011	2.7

Centrality selection:

► Based on a geometrical Glauber-model fit to the V0 amplitude

Frederick Kramer

Quarkonia Measurements with ALICE at the LHC

Backup - Cross Section vs. Energy

- High precision data needed
- Data in new energy regime further constrains models
- pp data: crucial baseline for AA

[D.d'Enterria: Nucl. Part. Phys. 35(10) (2008) 104039]

LHC will deliver excellent statistics for quarkonia measurements

Frederick Kramer

Backup - Relative Yield, Multiplicity

Backup - Corrections pp

Analysis in e^+e^- (10.0%)

1. Kinematical acceptance

►
$$|y^{J/\psi}| < 0.9$$

►
$$|\eta_{+}^{e^+,e^-}| < 0.9$$

▶
$$p_t^{e^+,e^-} > 1.0 \text{ GeV}/c$$

- 2. Reconstruction efficiency
- 3. Particle identification
- 4. Mass integration limits

Analysis in
$$\mu^+\mu^-$$
 (32.9%)

1. Kinematical acceptance

•
$$-4.0 < y^{J/\psi} < -2.5$$

• $p^{\mu^+,\mu^-} > 4.0 \text{ GeV}/c$

2. Reconstruction efficiency

Backup - Partial Efficiencies pp

Frederick Kramer

Quarkonia Measurements with ALICE at the LHC

14 / 14

Backup - Systematic Error Estimation pp

Channel	e^+e^-		$\mu^+\mu^-$		
Trigger efficiency	0%		4%		
Acceptance input	1%		2%		
Reconstruction efficiency	11%		3%		
Signal extraction	8.5%		7.5%		
R factor	0%		3%		
Luminosity	8%				
Branching ratio	1%				
Total sys. error	16.1%		12.6%		
Polarization	$\alpha = -1$	$\alpha = 1$	$\alpha = -1$	$\alpha = 1$	
Collins-Soper	+19%	-13%	+31%	-15%	
Helicity	+21%	-15%	+22%	-10%	

Largest contribution: (yet) unknown polarization

Frederick Kramer

Quarkonia Measurements with ALICE at the LHC

Backup - Systematic Error Estimation Pb-Pb

Source	e^+e^- centrality				common
	0_10%	10-20%	20_40%	40-80%	common
	0-10/0	10-2070	20-40/0	+0-0070	
$N_{\rm J/psi}$	19%	14%	17%	14%	
$N_{ m J/psi}/N_{ m J/psi}^{40-80\%}$	12%	8%	7%		
Acceptance input					3%
Tracker efficiency	4%	2%	1%	0%	5%
Trigger efficiency					4%
Reconstruction eff.					2%
Branching ratio					1%
Cross section					13%
$\langle T_{ m AA} angle$	4%	4%	4%	6%	
$\left< T_{ m AA} \right>^{ m i} / \left< T_{ m AA} \right>^{ m 40-80\%}$	6%	5%	4%		
Total for R _{AA}	20%	15%	17%	15%	15%
Total for $R_{\rm CP}$	14%	10%	8%		

Frederick Kramer

Quarkonia Measurements with ALICE at the LHC

Backup - Polarization Reference Frames

Collins-Soper (CS): bisector of the angle between proj. and (-) target in the quarkonium C.M. frame. Helicity (HE): Direction of the quarkonium in the C.M. frame of the collision. **Backup - Polarization Reference Frames**

Characterization of the Quark-Gluon Plasma

- ► Direct Quarkonia production + feed down $(J/\psi) \rightarrow pp$
- Cold nuclear matter effects: \rightarrow **pA**
 - Nuclear absorption (small at LHC) ↓↓
 - Shadowing (depending on x) $\downarrow\downarrow\uparrow\uparrow$

- Melting due to Debye screening $\downarrow\downarrow$
- \blacktriangleright Recombination of uncorr. $Q\bar{Q}$ $\uparrow\uparrow$
- Thermal production (at LHC) $\uparrow\uparrow$

$$R_{\rm AA} = \frac{Y_{\rm Pb-Pb}^{\rm J/\psi}}{\langle N_{\rm coll} \rangle \cdot Y_{\rm pp}^{\rm J/\psi}}$$

Fit to $\ensuremath{\mathit{p_t}}$ Spectra

$$\frac{\mathrm{d}\sigma}{\mathrm{d}p_{\mathrm{t}}} \sim \frac{p_{\mathrm{t}}}{\left(1 + \left(\frac{p_{\mathrm{t}}}{p_{\mathrm{0}}}\right)^{2}\right)^{x}}$$

Frederick Kramer

(1)

Physics Motivation: Quark-Gluon Plasma

Frederick Kramer

Quarkonia Measurements with ALICE at the LHC