Study of charmonium spectroscopy at BESIII

LiangLiang WANG (For BESIII Collaboration) Institute of High Energy of Physics, Beijing, China

Hadron2011 München

Outline

- ► BEPCII and BESIII
- \triangleright Observation of h_c at BESIII
- > Precision measurement of the η_c properties at BESIII
- > The first observation of the M1 transition $\psi' \rightarrow \gamma \eta_c(2S)$
- > Summary

The Beijing Electron-Positron Collider II

The Beijing Spectrometer III (BESIII)

BESIII data samples

Energy points	luminosity	Number of resonant events
$\mathbf{J/\psi}$	65pb ⁻¹	226 million
ψ'	150pb ⁻¹	106 million
3.65 GeV	45pb ⁻¹	
ψ(3770)	2900pb ⁻¹	
Scan around ψ(3770) (3.646~3.892 GeV)	76pb ⁻¹	
4.01 GeV (ψ(4040))	470pb ⁻¹	

Observation of h_c at BESIII

$h_c({}^1P_1)$ in charmonium family

- Spin singlet P wave (S=0, L=1)
- ► E835 found evidence for h_c in pp→h_c→γη_c
- ≻ CLEO-c observed h_c in ee→ ψ '→ $\pi^0 h_c$, h_c → $\gamma \eta_c$ $\Delta M_{hf}(1P)=0.08\pm0.18\pm0.12 MeV/c^2$

Observation of h_c at BESIII (inclusive)

- BESIII Collaboration: PRL104, 132002, (2010)
 - > Select inclusive $\pi^0(\psi' \rightarrow \pi^0 h_c)$
 - Select E1-photon in $h_c \rightarrow \gamma \eta_c$ (E1 tagged) or not (E1 untagged)
 - ➤ E1-tagged selection gives $M(h_c)=3525.40\pm0.13\pm0.18MeV
 (\Delta M_{hf}(1P)=0.10\pm0.13\pm0.18MeV/c^2)
 \Gamma(h_c)=0.73\pm0.45\pm0.28MeV
 (<1.44MeV at 90% CL)
 Br(ψ'→π⁰h_c)×Br(h_c→γη_c)=
 (4.58±0.40±0.50) × 10⁻⁴$

➤ E1-untagged together with tagged selection gives the first measurement $Br(\psi' → \pi^0 h_c) = (8.4 \pm 1.3 \pm 1.0) × 10^{-4} \\
 Br(h_c → \gamma \eta_c) = (54.3 \pm 6.7 \pm 5.2)\%$

Measurements of the h_c properties at BESIII (exclusive)

Simultaneous fit to π^0 recoiling mass $M(h_c) = 3525.31 \pm 0.11 \pm 0.15$ MeV $\Gamma(h_c) = 0.70 \pm 0.28 \pm 0.25$ MeV $N = 832 \pm 35$ $\chi^2/d.o.f. = 32/46$ *BESIII preliminary* Consistent with BESIII inclusive results PRL104,132002(2010) CLEOc exlusive results $M(h_c)=3525.21\pm0.27\pm0.14$ MeV/c² N = 136±14 PRL101, 182003(2008)

η_c lineshape from $\psi' \rightarrow \pi^0 h_c$, $h_c \rightarrow \gamma \eta_c$

$\begin{array}{c} \mbox{Precision measurement of} \\ \mbox{the } \eta_c \mbox{ properties} \end{array}$

Introduction

- > The lowest lying S-wave spin singlet charmonium η_c was discovered in 1980 by MarkII.
- Earlier experiments using J/ ψ radiative transition gives $M(\eta_c) \sim 2978.0 \text{MeV/}c^2$, $\Gamma(\eta_c) \sim 10 \text{MeV}$.
- ➢ Recent studies using the two-photon processes gives M(η_c)=2983.1±1.0 MeV/c², Γ(η_c)=31.3±1.9 MeV.
- > The most recent study from CLEO-c pointed out the distortion of the η_c line shape in ψ ' decays.
- Measurement of the η_c properties at BESIII
 Data sample: 106M ψ' events, 45pb⁻¹ continuum data at 3.65 GeV
 Decay modes X_i: KsKπ, K⁺K⁻π⁰, ηπ⁺π⁻, KsK3π, K⁺K⁻π⁺π⁻π⁰, 3(π⁺π⁻), where Ks→π⁺π⁻, η→γγ, π⁰→γγ

Backgrounds for $\psi' \rightarrow \gamma \eta_c \rightarrow \gamma X_i$

 $\succ \psi' \rightarrow \pi^0 X_i$

With the optimized selection, the mass spectra for $\pi^0 X_i$ events are measured in data and scaled according to the full simulation to estimate the contribution in $\gamma \eta_c$ candidates.

Non-resonant contribution $\psi' \rightarrow \gamma X_i$ exact the same final states, can not be removed

Rare backgrounds Production rate or efficiency is very low, estimated based on the inclusive MC

Continuum events Estimated by using the 45pb⁻¹ data taken at 3.65GeV

Backgrounds for $\psi' \rightarrow \gamma \eta_c \rightarrow \gamma X_i$ (conti.)

Mass spectrum fitting

 $\sigma \bigotimes (\epsilon |e^{i\phi} f_1 \mathcal{S} + \alpha Non|^2 f_2) + BKG$

- ► S: signal function (BW with mass width floated)
- ► Non: non-resonant γX_i PDF (all assumed to 0⁻⁺)
- **BKG**: the sum of other backgrounds $\pi^0 X_i$ + other rare ψ ' decays + continuum, fixed in the fitting
- \blacktriangleright ϕ : interference phase between η_c decay and non-resonant contribution

Fit results for individual modes:

mode (i)	signal yield	ε (%)	mass (MeV/c^2)	width(MeV)) ϕ_i	$\chi^2/d.o.f$	significance
$K_S K^+ \pi^-$	880.4	35.0	2984.7 ± 1.2	32.5 ± 2.3	2.9 ± 0.3	1.1	6.4
$K^+K^-\pi^0$	948.4	25.0	2980.3 ± 1.5	30.5 ± 2.4	2.4 ± 0.4	0.9	3.4
$\eta \pi^+ \pi^-$	573.4	25.0	2982.4 ± 1.8	31.0 ± 3.3	2.2 ± 0.2	1.2	3.8
$K_S K^+ \pi^+ \pi^- \pi^-$	432.3	11.0	2986.9 ± 2.1	34.1 ± 3.3	2.3 ± 0.2	0.7	4.4
$K^+K^-\pi^+\pi^-\pi^0$	1033.6	11.0	2985.4 ± 1.3	29.1 ± 2.8	2.6 ± 0.2	1.2	7.0
$3(\pi^+\pi^-)$	664.4	17.0	2986.8 ± 1.3	33.7 ± 3.1	2.5 ± 0.1	1.1	7.0
$\operatorname{combined}$	4532.5	-	2984.5 ± 0.6	31.7 ± 1.1	2.5 ± 0.1	-	_
C.L.	-	-	1.1%	89%	28%	-	-

Constant fitting gives $\chi^2/ndf=5.142/5$

Interference

The simultaneous fit

The η_c mass, width and interference phase ϕ are constrained to be the same

(the significance of the interference is 15σ)

16

Comparison of BESIII preliminary results with other measurements

PDG10 ave. : Earlier experiments using J/ψ radiative transition

The first observation of the M1 transition $\psi' \rightarrow \gamma \eta_c(2S)$

Introduction

First "observation" by Crystal Ball in 1982 (M=3.592, B=0.2%-1.3% from $\psi' \rightarrow \gamma X$, never confirmed by other experiments.)

> Published results about $\eta_c(2S)$ observation:

Experiment	$M \; [MeV]$	$\Gamma [MeV]$	Process
Belle [1]	$3654 \pm 6 \pm 8$		$B^{\pm} \to K^{\pm} \eta_c(2S), \eta_c(2S) \to K_S K^{\pm} \pi^{\top}$
CLEO $[2]$	$3642.9 \pm 3.1 \pm 1.5$	$6.3 \pm 12.4 \pm 4.0$	$\gamma\gamma \to \eta_c(2S) \to K_S K^{\pm} \pi^{\mp}$
BaBar [3]	$3630.8 \pm 3.4 \pm 1.0$	$17.0 \pm 8.3 \pm 2.5$	$\gamma\gamma \to \eta_c(2S) \to K_S K^{\pm} \pi^{\mp}$
BaBar $[4]$	$3645.0 \pm 5.5^{+4.9}_{-7.8}$		$e^+e^- \rightarrow J/\psi c\bar{c}$
PDG[5]	3638 ± 4	14 ± 7	

Combined with the results based on two-photon processes from BaBar and Belle reported at ICHEP 2010, the world average $\Gamma(\eta_c(2S))=12\pm 3 \text{ MeV}$

- → The M1 transition $\psi' \rightarrow \gamma \eta_c(2S)$ has not been observed. (experimental challenge : search for real photons ~50MeV,)
- ► Better chance to observe $\eta_c(2S)$ in ψ ' radiative transition with ~106M ψ ' data at BESIII.
- > Decay mode studied: $\psi' \rightarrow \gamma \eta_c(2S) \rightarrow \gamma K_S K \pi$ (K+K- π^0 etc. in progress)

Mass spectrum representation

- > The 4C kinematic fitting used to select the $\gamma K_s K \pi$ candidates ($\chi^2_{4C} < 50$)
- Still some KsK π BG events contribute the γ KsK π candidates with a fake photon.
- → The invariant mass from 4C-kinematic fits make the BG ψ' →KsKπ contaminates the $\eta_c(2S)$ mass region (3.6~3.66GeV).
- The mass from 3C-kinematic fits (the measured energy of the photon is free) is little biased by the fake photon.
- Difference small between 4C and 3C for signal events

So the 3C fit mass used to determine the yields and parameters

Mass fitting (conti.)

Significance with systematic variations not less than 5σ

Preliminary measurements from $\psi' \rightarrow \gamma \eta_c(2S) \rightarrow \gamma KsK\pi$

> $M(\eta_{c}(2S))=3638.5\pm2.3_{stat}\pm1.0_{sys}$ (MeV/c²) > $Br(\psi' \rightarrow \gamma \eta_{c}(2S) \rightarrow \gamma KsK\pi)=(2.98\pm0.57_{stat}\pm0.48_{sys}) \times 10^{-6}$ Br($\eta_{c}(2S) \rightarrow K\bar{K}\pi$)=(1.9±0.4±1.1)% from BaBar

 $> Br(\psi' \rightarrow \gamma \eta_c(2S)) = (4.7 \pm 0.9_{stat} \pm 3.0_{sys}) \times 10^{-4}$

CLEO-c: <7.6×10⁻⁴ (PRD81,052002(2010)) Potential model: (0.1–6.2)×10⁻⁴ (PRL89,162002(2002))

Summary

- High luminosity by BEPCII and the good performance of BESIII give us better chance to study the chamonium spectroscopy.
- > Study of h_c at BESIII (inclusive & exclusive) gives the measurements of mass, width of h_c as well as $Br(\psi' \rightarrow \pi^0 h_c, h_c \rightarrow \gamma \eta_c)$.
- > Precise measurement of the properties of η_c done at BESIII. The observed distortion η_c line shape described successfully by a interference model.
- > The first observation of the M1 transition $\psi' \rightarrow \gamma \eta_c$ (25).
- > Great new studies will come out on the chamonium spectroscopy just from the largest $\psi(4040)$ sample already collected, but from much larger ψ' data next year at BESIII.

24

Backups

Fitting function

$$\sigma \bigotimes (\epsilon |e^{i\phi} f_1 \mathcal{S} + \alpha Non|^2 f_2) + BKG$$

- ➤ S: signal function (BW with mass width floated)
- > Non: non-resonant γX_i PDF (a 2nd-order Chebychev function with free parameters)
- > **BKG**: the sum of other backgrounds $\pi^0 X_i$ + other rare ψ' decays + continuum, fixed in the fitting
- ▶ **φ**: interference phase
- $\succ \alpha$: the strength of the non-resonant
- \succ ϵ : mass-dependent efficiency
- \succ σ : experimental resolution
- $> \mathbf{f_1^2 f_2}: M1 \text{ form factor } (\mathbf{E_{\gamma}^4 E_{\gamma}^3} = \mathbf{E_{\gamma}^7})$

Results of the fits for different modes

27

More consistency checks

- Difference between the BG estimation and mass fitting $\Delta N=12\pm14$
- Branching ratios for $\psi' \rightarrow \gamma \chi_{cJ} \rightarrow \gamma K_{s} K \pi$

	From this analysis (stat. err. only)				
	N_{obs}	ϵ	$\mathcal{B}(\psi' \to \gamma \chi_{cJ}, \chi_{cJ} \to K^0_S K^{\pm} \pi^{\mp})$	${\mathcal B}$ from PDG	
χ_{c1}	7065 ± 88	27.2%	$(3.54 \pm 0.15) \times 10^{-4}$	$(3.39 \pm 0.34) \times 10^{-4}$	
χ_{c2}	1204 ± 37	26.0%	$(6.31 \pm 0.30) \times 10^{-5}$	$(5.81 \pm 0.91) \times 10^{-5}$	

Intries

data

 η_c(2S) MC
 --K⁰_SKπ(γ_{μερ}) MC

T,

• The distributions of the selected photons $M_{KsK\pi} \in (3.6, 3.66) \text{ GeV/c}^2$:

