New Observations on Light Hadron Spectroscopy at BESIII

Hongwei LIU

For BESIII Collaboration Institute of High Energy Physics (IHEP)

XIV International Conference on Hadron Spectroscopy Munich, 13- 17 June ,2011

Outline

- Introduction
- $p\overline{p}$ mass threshold study in J/ ψ and ψ' radiative decays
- Confirmation of X(1835) and observation of two new resonances in $J/\psi \to \gamma \pi^+ \pi^- \eta'$
- Observation of the new process of $J/\psi \rightarrow \omega X(1870) \rightarrow \omega a_0(980)\pi \rightarrow \omega \eta \pi^+ \pi^-$
- Summary

Introduction

- Multi-quark states, glueballs and hybrids have been searched for experimentally for a very long time, but none have been established.
- However, during the past three years, a lot of unexpected experimental evidence for hadrons cannot (easily) be explained by the conventional quark model. For example, at BESII:
 - \succ pp threshold enhancement was observed in $J/\psi \rightarrow \gamma p \overline{p}$
 - > X(1835) was observed in $J/\psi \rightarrow \gamma \pi^+ \pi^- \eta'$

2011/6/17

The BEPCII/BESIII Project

Double-ring collider Designed Luminosity: 1×10^{33} cm⁻²s⁻¹ Record Luminosity: 6.5×10^{32} cm⁻²s⁻¹ @3770MeV Beginning of 2004, construction starts Apr. 14, 2009: ~106 M ψ ' events (42.3pb⁻¹ at 3.65GeV) July 28, 2009: ~225 M J/ ψ events (2.9 fb⁻¹ ψ (3770))

We have opportunities to confirm the existence of $p\overline{p}$ threshold

enhancement and X(1835) at BESIII... and for new observations!

$p\overline{p}$ mass threshold study in J/ ψ and ψ ' radiative decays

 $p\overline{p}~~\mbox{mass}$ threshold enhancement in

 $J/\psi \rightarrow \gamma p\overline{p}$ @BESII,BESIII

 $\psi' \to \pi^+ \pi^- J/\psi, J/\psi \to \gamma p \overline{p}$ @BESIII

no similar structures in

 $\psi' \rightarrow \gamma p \overline{p}$ @BESII,BESIII $J/\psi \rightarrow \omega p \overline{p}$ @BESII $\Upsilon(1S) \rightarrow \gamma p \overline{p}$ @CLEO

Observation of $p\overline{p}$ **mass threshold enhancement @ BESII**

Several non-observations

➢Narrow threshold enhancement is evident in *PP* mass spectrum.

Mass spectrum fitting

$p\overline{p}$ invariant mass spectrum and Dalitz plot

 $J/\psi \to \gamma p\bar{p}$

Significant narrow threshold enhancement exists

Mass spectrum fitting

Fit result:

Mass=1861.6 \pm 0.8*MeV* / c^2

 $\Gamma < 8 \text{ MeV}(90\% \text{ CL})$

Study on more sophisticated fits, such as including FSI, is ongoing

$$M=1859^{+3}_{-10} {}^{+5}_{-25} MeV/c^2$$

$$\Gamma < 30 MeV/c^2 (90\% CL)$$

$p\overline{p}$ threshold mass spectrum in ψ' radiative decay

Pure FSI interpretation of the narrow and

strong $p\overline{p}$ threshold enhancement is disfavored.

Confirmation of X(1835) and observation of two new structures in $J/\psi \rightarrow \gamma \ \pi^+ \pi^- \eta'$

Observation of X(1835) in $J/\psi \rightarrow \gamma \pi^+ \pi^- \eta'$ at BESII

BESII result(Stat. sig. ~ 7.7 σ): $M = 1833.7 \pm 6.1(stat) \pm 2.7(syst)MeV$ $\Gamma = 67.7 \pm 20.3(stat) \pm 7.7(syst)MeV$

PRL 95,262001(2005)

> Confirmation of X(1835) is necessary with high statistic data sample.

- > LQCD predicts the 0^{-+} glueball mass is ~2.3GeV.
- > A 0⁻⁺ glueball may have similar property as η_c (the main η_c decay mode is $\pi\pi\eta'$).

 \rightarrow It is important and interesting to study $J/\psi \rightarrow \gamma \pi^+ \pi^- \eta'$

- > X(1835) and η_c are evident.
- Two additional structures are observed at M~2.1GeV and 2.3GeV
- \succ There maybe some f₁(1510).

Fitting for the combined mass spectrum

- ➢ Fitting with four resonances (acceptance weighted BW ⊗ gauss)
 ➢ Three background components:
 - 1 Contribution from non- η ' events estimated by η ' mass sideband
 - 2 Contribution from $J/\psi \to \pi^0 \pi^+ \pi^- \eta'$ with re-weighting method
 - **3** Contribution from "PS background"

$$f_{bkg}(x) = (x - m_0)^{1/2} + a_0 (x - m_0)^{3/2} + a_1 (x - m_0)^{5/2}, m_0 = 2m_\pi + m_\eta$$

Red line: estimated contribution of 1+ 2 Black line: total background

Stat. sig. is conservatively estimated: fit range, background shape, contribution of extra resonances

Fit results for the combined two η' decays:

Resonance	M(MeV/c²)	Γ(MeV/c²)	Stat.sig.
X(1835)	1836.5 \pm 3.0 ^{+5.6} -2.1	190.1±9.0 ⁺³⁸ -36	>20σ
X(2120)	2122.4±6.7 ^{+4.7} -2.7	83±16 ⁺³¹ -11	7.2σ
X(2370)	2376.3±8.7 ^{+3.2} -4.3	83±17 ⁺⁴⁴ -6	6.4σ

- X(1835) resonance is confirmed at BESIII, but the width is significantly larger than that measured at BESII with one resonance in the fit.
- Two new resonances, X(2120) and X(2370), are observed with significances larger than 7.2σ and 6.4σ respectively.
- PWA is needed not only to determine the spin-parities of above three resonances, but also to make more precise measurements on masses, widths and BRs by considering possible interferences among them.

Observation of $J/\psi \to \omega X(1870) \to \omega a_0(980)\pi$ in $J/\psi \to \omega \pi^+ \pi^- \eta$

Analysis of $J/\psi \rightarrow \omega \pi^+ \pi^- \eta @BESIII$

In addition to the well-known η' , $f_1(1285)$ and $\eta(1405)$, an unknown structure (denoted as X(1870)) around 1.87GeV/ c^2 is observed.

The f_(1285), $\eta(1405)$ and X(1870) primarily decay via $a_0(980)\pi^\pm$ mode.

Mass spectrum fitting

Fitting with three resonances (acceptance weighted BW Sigma Gauss)
 Background component described by Polynomial function

Fit results:

The fit is performed under the assumption that the interference between the resonances and background can be ignored.

Whether the X(1870) is the X(1835) or $\eta_2(1870)$ ($\Gamma = 225 \pm 14 \text{ MeV}/c^2$), or a new resonance? Need further study.

Summary

- $X(1860) \rightarrow p\overline{p}$ is confirmed in J/ ψ radiative decay, and no obvious similar structure was observed in ψ ' radiative decay.
- $X(1835) \rightarrow \pi^+ \pi^- \eta'$ is confirmed in $J / \psi \rightarrow \gamma \pi^+ \pi^- \eta'$,

and two new resonances, X(2120) and X(2370) are observed with significance larger than 7.2 σ and 6.4 σ respectively.

- A new process $J/\psi \rightarrow \omega X(1870) \rightarrow \omega a_0(980)\pi$ is observed.
- Whether or not the X(1860), X(1835) and X(1870) are from the same source, still needs further study.

Thank you!

Summary on the previous experimental results

- The strong and narrow $p\overline{p}$ mass threshold enhancement has only been observed in J/ ψ radiative decay, not in any other place so far.
- Any model trying to interpret the mass threshold enhancement should also answer why it is not observed in other places, especially in $\psi(2S)$ and $\Upsilon(1S)$ radiative decays a s well as in $J / \psi \rightarrow \omega$ pprocess.

Mass spectrum fitting method

- Fit function:
 - signal: acceptance weighted S-wave BW function:

$$BW(M) \propto \frac{q^{(2l-1)}k^3}{(M^2 - M_0^2)^2 + M^2\Gamma^2}$$

- q : the proton momentum in CMS of ppb
- k : the photon momentum
- k: the ppb orbital angular momentum
- background shape: $f_{bkg}(\delta) = \delta^{\frac{1}{2}} + a_1 \delta^{\frac{3}{2}} + a_2 \delta^{\frac{5}{2}}$

 a_1 and a_2 are obtain from a fit to an uniform phase space MC sample

pp threshold enhancement @ CLEOc

Events / 20 MeV/c² 5 & 8 & 6 & 8 CLEO-c does fit the same as BES and obtains:

CLEO-c fits with three contributions:

 $R_{thr} + f_0(2100) + PS$ (1) (2) (3)

 $M(R_{thr}) = 1837^{+10}_{-12}^{+9}_{-7}$ (MeV), CL = 26.1% $\Gamma(R_{thr}) = 0^{+44}$ (MeV), $B_1(J/\psi \rightarrow \gamma R_{thr}) \times B_2(R_{thr} \rightarrow p\overline{p}) = (11.4^{+4.3} + 4.2 + 2.6) \times 10^{-5}$

0 400 500 600 700 800 900 300 $\Delta M = M(p\bar{p}) - 2m_p (MeV/c^2)$ The central value of the mass is close to the sub-threshold resonance mass reported by BES with $M(R) = 1833.7 \pm 6.1 \pm 2.7$ (MeV), observed in $J/\psi \rightarrow \gamma R, R \rightarrow \pi^+\pi^-\eta^/$ [PRL 95 (2005) 262001].

70

40

30

20

10

 $J/\psi \rightarrow p\bar{p}\gamma$

preliminary

QWG2010

Z. Metreveli

CLEO-c

BES considered these (2) and (3) as systematic errors.

2011/6/17

Event selection for $J/\psi \rightarrow \gamma \pi^+ \pi^- \eta' (\eta' \rightarrow \gamma \rho, \rho \rightarrow \pi^+ \pi^-)$

- Initial selection criteria:
 - $N_{charged}=4$, $N_{\gamma}>=2$
 - Ν_π>2
 - Kinematic fit(4C): $\chi^2_{4C}(\gamma\gamma\pi^+\pi^-\pi^+\pi^-) < 40$
 - $\chi^2_{4\mathsf{C}}(\gamma\gamma\pi^+\pi^-\pi^+\pi^-) \leq \chi^2_{4\mathsf{C}}(\gamma\gamma\mathsf{K}^+\mathsf{K}^-\pi^+\pi^-)$
- Final selection criteria:
 - Reduce background from $\pi^0 \pi^+ \pi^- \pi^+ \pi^-$:
 - $\begin{aligned} \left| m_{\gamma\gamma} m_{\pi} \right| &< 0.04 GeV \\ \left| m_{\gamma\gamma} m_{\eta} \right| &< 0.03 GeV \\ 0.72 GeV &< m_{\gamma\gamma} &< 0.82 GeV \end{aligned}$
 - Selection for ρ and η' signal: $|M_{\pi\pi} - m_{\rho}| < 0.2 \text{GeV}$

 $201 / M_{7\rho} - m_{\eta'} < 0.018 GeV$ Hadron 2011

28

Event selection for $J / \psi \rightarrow \gamma \pi^+ \pi^- \eta' (\eta' \rightarrow \pi^+ \pi^- \eta)$

- Initial selection criteria:
 - $N_{charged}=4$, $N_{\gamma}>=2$
 - Ν_π>2
 - Kinematic fit(4C,5C): $\chi^{2}_{4C}(\gamma\gamma\gamma\pi^{+}\pi^{-}\pi^{+}\pi^{-}) < 40$ $\chi^{2}_{5C}(\gamma\eta\pi^{+}\pi^{-}\pi^{+}\pi^{-}) < 40$
- Final selection criteria:
 - selection for η and η' signal: $|M_{\gamma\gamma} - m_{\eta}| < 0.03 \text{GeV}$ $|M_{\pi\pi\eta} - m_{\eta'}| < 0.01 \text{GeV}$

Fitting for the combined mass spectrum

Fitting with one resonance as **BESII**

Fit result(Stat. sig.~ 20σ): $M = 1839.9 \pm 3.0(stat)MeV$ $\Gamma = 104.5 \pm 10.5(stat)MeV$

BESII result(Stat. sig. ~ 7.2 σ): $M = 1836.5 \pm 3.0(stat)^{+5.6}_{-3.1}(syst)MeV$ $\Gamma = 190 \pm 9(stat)^{+38}_{-36}(syst)MeV$

X(1835) confirmed by BESIII

Mass spectrum of $\pi^+\pi^-\eta'$

Fit with one resonances + polynomial background:

Mass spectrum fitting

Resonance	$\rm Mass~(MeV/c^2)$	Width (MeV/c^2)	Branch ratio (10^{-4})
$f_1(1285)$	$1285.1 \pm 1.0 \substack{+1.6 \\ -0.3}$	$22.0 \pm 3.1 \substack{+2.0 \\ -1.8}$	$1.25 \pm 0.10 \substack{+0.19 \\ -0.20}$
$\eta(1405)$	$1399.8 \pm 2.2^{+2.8}_{-0.1}$	$52.8 \pm 7.6 \substack{+0.1 \\ -7.6}$	$1.89 \pm 0.21^{+0.21}_{-0.23}$
X(1870)	$1877.3 \pm 6.3 \substack{+3.4 \\ -7.4}$	$57 \pm 12^{+19}_{-4}$	$1.50 \pm 0.26 \substack{+0.72 \\ -0.36}$

Study of Background component is ongoing

2011/6/17

Mass spectrum fitting

Fit result (stat. sig.~7.2 σ) $M = 1877.3 \pm 6.3 MeV$ $\Gamma = 57 \pm 12 MeV$ $BR = (1.50 \pm 0.26) \times 10^{-4}$

The fit is performed under the assumption that the interference between the resonances and background can be ignored.

Whether the X(1870) is the X(1835) or $\eta_2(1870)$ ($\Gamma = 225 \pm 14 \text{ MeV}/c^2$), or a new resonance, needs further study.