$\pi^-\gamma \to \pi^-\pi^-\pi^+$ at Low Masses compared to ChPT Prediction at COMPASS

Stefanie Grabmüller, Dmitry Ryabchikov, Jan Friedrich for the COMPASS collaboration

Physik Department E18 Technische Universität München

XIV International Conference on Hadron Spectroscopy June 17th 2011

supported by: Maier-Leibnitz-Labor der TU und LMU München,

Excellenzcluster: Origin and Structure of the Universe, BMBF

Meson Spectroscopy at Low Momentum Transfer

Diagrams from ChPT

Absolute Cross-Section and ChPT Prediction

Meson Spectroscopy at Low Momentum Transfer

Motivation for Analysis

Meson spectrum at lowest momentum transfer: Contribution of photon-exchange

At low masses: "pions only" → predictions by ChPT

tree diagrams of 3π production in $\pi\gamma$ scattering

- At higher masses: resonances:
 - radiative coupling of a₂(1320) / heavier mesons
 - interference between diffractive and Coulomb production

Technische Universitä

Strong and Coulomb Interaction

Interaction mechanisms

- Diffraction:
 - target particle remains intact
 - *I* = 0 Reggeon t-channel exchange exchange particle: (mostly) Pomeron
 - Assumptions: Factorization of meson and Pb vertex, no final state interaction
- Primakoff: photon exchange (J^{PC} = 1⁻⁻) dominant contribution at smallest momentum transfer quasi-real γ → M = ±1

COMPASS 2004 Pilot Hadron Run

Experimental Setup

Overview

COMPASS 2004 Pilot Hadron Run

Experimental Setup

Overview

Technische Universität München

Pilot Hadron Run 2004

Partial Wave Analysis Formalism

Isobar Model

- Isobar model: Intermediate 2-particle decays
- Partial wave in reflectivity basis: J^{PC}M^e[isobar]L

- Mass-independent PWA (40 MeV/c² mass bins): 38 waves Fit of angular dependence of partial waves, interferences
- Acceptance corrections from MC
- (Mass-dependent χ^2 -fit)

Meson Spectroscopy at Low Momentum Transfer

Diagrams from ChPT

Absolute Cross-Section and ChPT Prediction

ChPT Amplitude (Leading Order)

- $t' < 10^{-3} \, (\text{GeV}/c)^2$: Coulomb production in M = 1 waves $(\pi \gamma \rightarrow 3\pi)$
- Low masses: no resonances, governed by pion-scattering →tree diagrams from ChPT prediction¹

- ChPT amplitude introduced as single partial wave
 - not orthogonal to M = 1 waves in isobar model
 - replaces (up to 6) $(\pi\pi)_s\pi$ and $\rho\pi$ waves by a single amplitude
 - Fit quality in low mass region compatible
- ChPT valid for $3m_\pi pprox 0.42 \, {
 m GeV}/c^2 < m_{3\pi} < 0.7 \, {
 m GeV}/c^2$
- Higher masses: Isobaric decays

¹EPJ A36 (2008) 181

Chiral amplitude at low masses equivalent to fit with 6 waves **but** much less parameters (i.e. basically intensity)

... is this really photon exchange?

• Fits in small bins of t', but only 1 mass bin (0.51 $< m_{3\pi} < 0.78$) GeV/ c^2

• t' dependence of intensity $\sigma \propto e^{-bt'}$

 $\pi^{-}\pi^{-}\pi^{+}$ at Low Masses compared to ChPT Prediction Stefanie Grabmüller — π

 \rightarrow Primakoff (Photon)

 \rightarrow diffractive (Pomeron)

One Step further: Absolute Cross-Section

[Nucl. Phys. A 848 (2010) 198]

- Experimental determination of absolute cross-section $\pi\gamma \rightarrow 3\pi$
- Normalization via $K^- \rightarrow \pi^+ \pi^- \pi^-$ decays in target region

Meson Spectroscopy at Low Momentum Transfer

Diagrams from ChPT

Absolute Cross-Section and ChPT Prediction

Stefanie Grabmüller — $\pi^- \gamma \rightarrow \pi^- \pi^- \pi^+$ at Low Masses compared to ChPT Prediction

From Intensity to Cross-Section

Beam K^- Decays from Data

In each bin of $m_{3\pi}$:

Number of reactions (events) = $\epsilon_{bin} \cdot \int \mathcal{L} dt \cdot \sigma_{abs}$

COMPASS π^- beam features K^- component \rightarrow beam flux from $K^- \rightarrow \pi^+ \pi^- \pi^-$ decays

ChPT Prediction of $\pi^-\gamma ightarrow \pi^-\pi^-\pi^+$ Cross-Section reduces University Cherry Cross-Section

Cross-section of $\pi^-\gamma \to \pi^-(q_1)\pi^-(q_2)\pi^+(q_3)$ from ChPT

$$\begin{aligned} d\sigma_r(s) &= \frac{8\pi\alpha\cdot s}{(s-m_\pi^2)^3 f_\pi^4} \cdot d\Phi_3(p+k,q_1,q_2,q_3) \cdot \\ &\left[\frac{\vec{q}_1 \times \hat{k}}{\omega_1 - \vec{q_1} \cdot \hat{k}} \left(p_0(\sqrt{s} - \omega_2) - \sqrt{s}\omega_1 - \vec{k} \cdot \vec{q}_2 \right) + \right. \\ &\left. \frac{\vec{q}_2 \times \hat{k}}{\omega_2 - \vec{q}_2 \cdot \hat{k}} \left(p_0(\sqrt{s} - \omega_1) - \sqrt{s}\omega_2 - \vec{k} \cdot \vec{q}_1 \right) + \right. \\ &\left. \frac{\vec{q}_3 \times \hat{k}}{\omega_3 - \vec{q}_3 \cdot \hat{k}} \left(\sqrt{s}k_0 - p_0\omega_3 - \vec{k} \cdot \vec{q}_3 \right) \right]^2 \end{aligned}$$

Cross-section of $\pi^- Pb \rightarrow \pi^- \pi^- \pi^+ Pb$

$$\frac{d\sigma}{ds\,dt'} = \underbrace{\frac{\alpha \cdot Z^2}{\pi(s-m_{\pi}^2)} \cdot F_{\text{eff}}^2(t') \cdot \frac{t'}{(t'+t_{\min})^2} \cdot \sigma_r(s)}_{\sigma_r(s)}$$

Weizsäcker-Williams photon density

0.5

0.55

0.6

0.65

Mass of $\pi^- \pi^- \pi^+$ System (GeV/c²)

0.45

0.7

- Test of ChPT calculations in low mass region ($m_{3\pi} < 0.72 \,\text{GeV}/c^2$)
- Intensity shows good agreement with predicted cross-section (tree diagrams)
- First Measurement of $\pi\gamma \rightarrow 3\pi$ absolute cross section in low mass region

- Next-order (chiral loop) contribution
- Extension to adjacent mass region, including (chiral) ρ contributions
- Radiative coupling of resonances, e.g. *a*₂ (see next talk)
- COMPASS 2009 data

BACKUP SLIDES

Stefanie Grabmüller — $\pi^- \gamma \rightarrow \pi^- \pi^- \pi^+$ at Low Masses compared to ChPT Prediction

BACKUP: Partial Wave Analysis Formalism

Mass-independent PWA (narrow mass bins):

 $\sigma_{\mathrm{indep}}(\tau, \boldsymbol{m}, t') = \sum_{\epsilon \to -1} \sum_{r=1}^{N_r} \left| \sum_i T_{ir}^{\epsilon} f_i^{\epsilon}(t') \psi_i^{\epsilon}(\tau, \boldsymbol{m}) / \sqrt{\int |f_i^{\epsilon}(t')|^2 \mathrm{d}t'} \sqrt{\int |\psi_i^{\epsilon}(\tau', \boldsymbol{m})|^2 \mathrm{d}\tau'} \right|^2$

- Production strenght assumed constant in single bins
- Decay amplitudes ψ^ε_i(τ, m), with t' dependence f^ε_i(t')
 Production amplitudes T^ε_{jr} → Extended log-likelihood fit
 Acceptance corrections included
- Spin-density matrix: $\rho_{ij}^{\epsilon} = \sum_{r} T_{ir}^{\epsilon} T_{jr}^{\epsilon*}$
 - \rightarrow Physical parameters:

$$\begin{split} & \text{Intens}_{i}^{\epsilon} = \rho_{ii}^{\epsilon}, \\ & \text{relative phase } \Phi_{ij}^{e} \\ & \text{Coh } _{i,j}^{\epsilon} = \sqrt{(\text{ Re } \rho_{ij}^{\epsilon})^{2} + (\text{ Im } \rho_{ij}^{\epsilon})^{2}} \Big/ \sqrt{\rho_{ii}^{\epsilon} \rho_{ij}^{\epsilon}} \end{split}$$

- Mass-dependent χ^2 -fit (not presented here):
 - X parameterized by Breit-Wigner (BW) functions
 - Background can be added

BACKUP: Chiral amplitude replacing other waves (M=1)

Waveset in low mass region

Comparison of two fitting models (for $m_{3\pi} < 0.7 \,\text{GeV}/c^2$):

- Several *M* = 0 waves
- $1^{++}1^{\pm}\rho\pi S$
- $1^{++}1^{\pm}(\pi\pi)_{S}\pi P$
- $1^{-+}1^{\pm}\rho\pi P$
- $2^{++}1^{\pm}\rho\pi D$
- $2^{-+}1^{\pm}\rho\pi P$
- $2^{-+}1^{\pm}(\pi\pi)_{S}\pi D$

Both reflectivities are taken into account

- Fit without chiral amplitude, but "other" waves starting at 0.5 GeV/c²
- Chiral amplitude starting at threshold (i.e. 0.5 GeV/c²) M=1 (ππ)_sπ and ρπ waves thresholded as indicated

- Several *M* = 0 waves
- ChPT amplitude

• explicit contribution from the ρ ($m_{3\pi} > 0.7 \,\text{GeV}/c^2$), e.g.

Reconstructed beam energy distribution

Momentum Transfer

Stefanie Grabmüller — $\pi^- \gamma \rightarrow \pi^- \pi^- \pi^+$ at Low Masses compared to ChPT Prediction

 $\pi^{-}\pi^{-}\pi^{+}$ mass distribution

Acceptance of $\pi^-\pi^-\pi^+$ events ($t' < 0.001 \, (\text{GeV}/c)^2$)

BACKUP: Spin Totals for $t' < 10^{-3} \, (\text{GeV}/c)^2$

Technische Universität München

t' dependent amplitudes: Primakoff production: $M=1: e^{-b_{prim}t'} \rightarrow arises$ for $t' \approx 0$ Diffractive production: $M=0: e^{-b(m)t'}$

M=1:
$$t'e^{-b(m)t'} \rightarrow \text{vanishes for } t' \approx 0$$

BACKUP: Kaon mass resolution and vertex distribution

In each bin of $m_{3\pi}$: Number of reactions (events) = $\epsilon_{bin(3\pi)} \cdot \int \mathcal{L} dt \cdot \sigma_{abs}$

COMPASS π^- beam is contaminated with $K^ \rightarrow$ beam flux from K^- decays!

Calculation of Integrated Flux

$$\epsilon \cdot \int \Phi \mathrm{d}t = \frac{N(K^- \mathrm{decays})}{(1 - e^{-S/\beta\gamma\tau}) \cdot BR \cdot \left(\frac{K^-}{\pi^- K^- \bar{p}}\right)}$$

acceptance (from MC of kaon decay)

 $\int \Phi dt$ integrated beam flux

 ϵ

s length of decay volume

 $\beta\gamma\tau$: K^- decay length (1429 m at 190 GeV)

BR:
$$K^- \rightarrow \pi^+ \pi^- \pi^-$$
 branching ratio (5.59%)

 $\frac{K^{-}}{\pi^{-K-\bar{p}}}$: K^{-} fraction at COMPASS target (2.43%, estimated relative uncertainty 5%)