Study of the reaction $\pi^-\text{Be} \rightarrow \eta \pi^- \pi^- \pi^+\text{Be}$ in the VES experiment

D. Ryabchikov

Institute for High Energy Physics, Protvino

parallel talk at HADRON2011

At VES beam energies ($p_{beam} = 28...36 \text{ GeV}$) production of negative G-parity final states is dominated by diffraction.

The reaction $\pi^-\text{Be} \rightarrow \eta \pi^- \pi^- \pi^+\text{Be}$, $\eta \rightarrow 2\gamma$ is especially interesting:

- try to study high-mass final states having $J^{PC} = 0^{-+}, 1^{++}, 2^{-+}, \dots$
- try to understand nature of exotic 1^{++} partial waves in $f_1(1285)\pi^-$ and $\eta^{'}\pi^-$
- do we observe $\eta(1295)\pi^-$ channel ?
- known resonances: $\pi(1800)$, $\pi_2(1670)$, $a_2(1700) \rightarrow \eta 3\pi$?

invariant mass and momentum-transfer spectrums

"incoherent diffraction" region: $0.06 < t^{'} < 1.0 \text{ GeV}^2$

$f_1(1285)$ decay bi-plot

DATA

Monte-Carlo from PWA

Decay model $f_1(1285) \rightarrow a_0(980)\pi + (\pi\pi)_S \eta$ was adjusted

examples of ang. dep. in $f_1\pi^-$

examples of ang. dep. in $\eta' \pi^-$

PWA

Peripheral reaction: $\pi A \rightarrow M_1...M_NA'$ where π is a pion beam, $M_1...M_N$ is *N*-meson system and A(A') are nuclear or nucleon target (recoil)

Reflectivity basis: $\psi_{JM}^{\epsilon}(\tau) = c(M) \left[\psi_{JM}(\tau) - \epsilon P(-1)^{J-M} \psi_{J-M}(\tau) \right], \epsilon = \pm 1, M \ge 0$

PWA differential cross-section (for fit in mass or tprime bins):

 $\sigma_{\text{indep}}(\tau) = \sum_{\epsilon=-1}^{1} \sum_{r=1}^{N_r} \left| \sum_i T_{ir}^{\epsilon} \psi_i^{\epsilon}(\tau) \middle/ \sqrt{\int |\psi_i^{\epsilon}(\tau')|^2 \mathrm{d}\tau'} \right|^2 = \sum_{\epsilon} \sum_{i,j}^{-1} \left| \rho_{ij}^{\epsilon} |\bar{\psi}_i^{\epsilon}(\tau) |\bar{\psi}_j^{\epsilon}(\tau)^* - \rho_{ij}^{\epsilon} |\bar{\psi}_j^{\epsilon}(\tau) |\bar{\psi}_j^{\epsilon}(\tau)^* - \rho_{ij}^{\epsilon} |\bar{\psi}_j^{\epsilon}(\tau) |\bar{\psi}_j^{\epsilon}(\tau)^* - \rho_{ij}^{\epsilon} |\bar{\psi}_j^{\epsilon}(\tau) |\bar{\psi}_j^{\epsilon}(\tau)^* - \rho_{ij}^{\epsilon} |\bar{\psi}_j^{\epsilon}(\tau) |\bar{\psi}_j^{\epsilon}(\tau)^* - \rho_{ij}^{\epsilon} |\bar{\psi}_j^{\epsilon}(\tau)^* - \rho_{ij$

Mass-dependent χ^2 -fit: $\rho_{ij}^{\epsilon} = \sum_{r=1}^{N_r} \left(\sum_k C_{ikr}^{\epsilon} \mathsf{BW}_k(m) \sqrt{\int |\psi_i^{\epsilon}(\tau)|^2 d\tau} \right) \left(\sum_l C_{jlr}^{\epsilon} \mathsf{BW}_l(m) \sqrt{\int |\psi_j^{\epsilon}(\tau)|^2 d\tau} \right)^*$

- analysis is done in full 4-body phase-space (no f_1 or η' -cuts applied).
- possible to work applying relatively wide η' -cut for $\eta'\pi^-$ results only (still combi. background and non- η' background are respected/separated).
- functional description of narrow structures includes experimental resolution (η' lineshape-sum of 2 gaussians, $f_1(1285)$ -Breit-Wigner folded with resolution). This leads:
 - $\eta'\pi^-$ are added incoherently to all other $\eta 3\pi$,
 - 2 combinations of $\eta^\prime\text{-cross-section}$ incoherent to each-other
 - $f_1(1285)$ peak broadened, integration over wide value of $t' \Rightarrow rank=4$ density matrix is used
- non-relativistic Zemach tensor formalism (angular part of decay amplitudes)
- various channels (seen in mass spectrums or assumed): $a_0(980)\rho$, $a_2(1320)\eta$, $a_1(1260)\eta$, $\rho(1450)(\rightarrow \rho\eta)\pi^-$, $a_2(1320)\rho$, ...

Major $J^{PC}M\epsilon$ intensities. RED: t['] >0.06 GeV²

Both intensities rather small, some bump round 2 GeV. No clear phase motions. No signal from $\pi(1800)$

PWA in mass bins

Mass-dependent fit

Mass-dependent fit results

"Resonant model"

 $1^{-+} \\ M_1{=}1.640 \pm 0.020, \ \Gamma_1{=}0.400{\pm} \ 0.050 \\ 1^{++} \\$

 $\begin{array}{l} M_1{=}1.530\pm 0.020, \ \Gamma_1{=}0.410{\pm}\ 0.040\\ M_2{=}2.050\pm 0.030, \ \Gamma_2{=}0.340{\pm}\ 0.080\\ 2^{-+} \end{array}$

 $\begin{array}{l} \mathsf{M}_1{=}1.670\pm 0.024,\ \mathsf{\Gamma}_1{=}0.330{\pm}\ 0.050\\ \mathsf{M}_2{=}1.873\pm 0.011,\ \mathsf{\Gamma}_2{=}0.167{\pm}\ 0.015\\ \mathsf{a}_2(1320)\eta S \end{array}$

 $\begin{array}{l} M_2{=}2.040\pm 0.026, \ \Gamma_2{=}0.290{\pm}\ 0.070 \\ f_1(1285)\pi^-D \end{array}$

 χ^2 /*NDF*=300./(303-39)=1.14

"Non-Resonant model" $A_{bg} = exp(-\alpha q^2)$ 1^{-+} $\alpha_{1-+}=-1.8\pm0.2$ 1++ $\alpha_{1++} = -3.5 \pm 0.3$ $M_2 = 1.900 \pm 0.100, \Gamma_2 = 0.350 \pm 0.100$ 2^{-+} $M_1 = 1.660 \pm 0.050, \ \Gamma_1 = 0.400 \pm 0.110$ $M_2 = 1.872 \pm 0.011$, $\Gamma_2 = 0.162 \pm 0.015$ $a_2(1320)\eta S$ $M_2 = 2.000 \pm 0.030$, $\Gamma_2 = 0.290 \pm 0.080$ $f_1(1285)\pi^- D$ χ^2 /NDF=338./(303-37)=1.28

Conclusions

- PWA in mass bins of $\eta 3\pi$ -system demonstrates:
 - dominance of various NPE states
 - significant $f_1(1285)\pi^-$ and many other isobaric decay chains: $a_0(980)\rho$, $a_2(1320)\eta$, $a_1(1260)\eta$, $\rho(1450)(\rightarrow \rho\eta)\pi^-$, $a_2(1320)\rho$, ...
 - no $\eta(1295)\pi^{-1}$
 - $\eta' \pi^-$ has $a_2(1320)$ + exotic wave, rather broad structure and no clear structures in high mass 2^{++}
 - very small 0^{-+} , no $\pi(1800) \rightarrow \eta 3\pi$
- Further mass-dependent analysis:
 - $\bullet\,$ Can accomodate broad resonances in 1^{++} and 1^{-+} in 1.5-1.6 GeV region
 - $\pi_2(1670) \rightarrow f_1(1285)\pi^-$?? (not VERY clear yet)
 - $\pi_2(1880) \rightarrow a_2(1320)\eta$ values obtained: $M_2=1.873 \pm 0.011$, $\Gamma_2=0.167 \pm 0.015$ Needed: systematic study + Branchings
 - Non-resonant model a bit worse description. More natural to explain phase-lock between two very broad amplitudes.

- PWA in mass bins seems to be exhausted, however
 - using "partial de-coherence method" (recently developed) \rightarrow better measure interference terms/relative phases
 - recent $f_0(600)$ -parametrizations ightarrow clarify $(\pi\pi)_S\eta$ decay mode of $f_1(1285)$
- Mass-dependent fit:
 - to combine with other reactions (but using $\pi^-\pi^-\pi^+$ was NOT a success)
 - more sofisticated Breit-Wigner terms, way of adding resonances
 - more sofisticated background parametrization

0

- 2009-2010-modernization of electromagnetic calorimeter.
- Replaced:
 - cells (Sci-Pb "shashlyk" against lead glass)
 - HV bases (Cocroft-Walton generators against resistive dividers)
 - PMT (partly, now unified to single type FEU-84)
 - ADC (more compact and faster)
 - 2011 2012 Large chambers of Drift Tubes to be installed to replace very old DCs.
- Nov. 2010, apr. 2011 commissioning with beam (electron beam calibration and pion beam exposure)

2 gamma spectrum

