

Spin-exotic search in the $\rho\pi$ decay channel: **First results on** $\pi^-\pi^0\pi^0$ **in comparison to** $\pi^-\pi^+\pi^-$ **final states** (diffractively produced on proton)

Frank Nerling Universität Freiburg, Physikalisches Institut for the COMPASS Collaboration

Hadron 2011, XIV Intern. Conf. on Hadron Spectroscopy, Munich, Germany, 13-17 June 2011

Outline:

- Introduction
 - Spin-exotic mesons & the COMPASS experiment
 - PWA method
- First results on diffractive 3π production (2008 proton target data)
 - > 3π final states neutral vs. charged mode
 - PWA results on main & small waves
- Conclusions & outlook

bmb+f - Förderschwerpunkt

COMPASS

Großgeräte der physikalischen Grundlagenforschung

Motivation: Search for Spin Exotic States

Hybrid candidates (1.3 - 2.2 GeV/c²):

lightest hybrid predicted: exotic J^{PC} =1⁻⁺

- $\pi_1(1400)$: VES, E852, Crystal Barrel -> $\eta\pi$
- $\pi_1(1600)$: E852, VES -> $\rho\pi$, η ' π , $f_1\pi$, $b_1\pi$
- $\pi_1(2000)$: E852 -> $f_1(1285) \pi$, $b_1(1235) \pi$
- still controversal \rightarrow COMPASS

Diffractive scattering

- study of J^{PC} exotic mesons
- t-channel Reggeon exchange
- forward kinematics, target stays intact

Diffractive pion dissociation

- incoming π^- excited to resonance X^-
- X⁻ decays into final state, e.g. $(3\pi)^-$
- small momentum transfer

Spin Exotic Search -- two decay modes of $\rho\pi$ decay channel: Neutral Mode

Hybrid candidates (1.3 - 2.2 GeV/c²):

lightest hybrid predicted: exotic $J^{PC} = 1^{-+}$

- $\pi_1(1400)$: VES, E852, Crystal Barrel -> $\eta\pi$
- $\pi_1(1600)$: E852, VES $\rightarrow \rho\pi$, $\eta'\pi$, $f_1\pi$, $b_1\pi$
- $\pi_1(2000)$: E852 -> $f_1(1285) \pi$, $b_1(1235) \pi$
- still controversal \rightarrow COMPASS

Diffractive scattering

- study of J^{PC} exotic mesons
- t-channel Reggeon exchange
- forward kinematics, target stays intact

Diffractive pion dissociation

- incoming π^- excited to resonance X^-
- X⁻ decays into final state, e.g. $(3\pi)^-$: $\pi^- p \longrightarrow \pi^- \pi^0 \pi^0 p$ (neutral mode)
- small momentum transfer

Spin Exotic Search -- two decay modes of $\rho\pi$ decay channel: Charged Mode

Hybrid candidates (1.3 - 2.2 GeV/c²):

lightest hybrid predicted: exotic $J^{PC} = 1^{-+}$

- $\pi_1(1400)$: VES, E852, Crystal Barrel -> $\eta\pi$
- $\pi_1(1600)$: E852, VES $\rightarrow \rho\pi$, $\eta'\pi$, $f_1\pi$, $b_1\pi$
- $\pi_1(2000)$: E852 -> $f_1(1285) \pi$, $b_1(1235) \pi$
- still controversal \rightarrow COMPASS

Diffractive scattering

- study of J^{PC} exotic mesons
- t-channel Reggeon exchange
- forward kinematics, target stays intact

Diffractive pion dissociation

- incoming π^- excited to resonance X^-
- X⁻ decays into final state, e.g. $(3\pi)^{-}$:
 - $\pi^- p \longrightarrow \pi^- \pi^+ \pi^- p$ (charged mode)
- small momentum transfer

\rightarrow cf. previous, talk by F. Haas

COMPASS spectrometer: Hadron setup 2008/09

COMPASS spectrometer: Hadron setup 2008/09

Diffractive dissociation into 3π final states (2008 data, LH₂ target)

Mass of outgoing 3π system – neutral mode: $\pi^- \mathbf{p} \longrightarrow \pi^- \pi^0 \pi^0 \mathbf{p}$

Mass of outgoing 3π system – charged mode: $\pi^- p \longrightarrow \pi^- \pi^+ \pi^- p$

PWA: ~ 24M events (acceptance corr.)

PWA using isobar model

Partial wave analysis:

- program: Illinois/Protvino/Munich (D.Ryabchikov) software (IHEP/VES, TUM/COMPASS)
- Isobars: $(\pi\pi)_{S}$ [broad $f_{0}(600)+f_{0}(1370)$], $f_{0}(980)$, $\rho(770)$, $f_{2}(1270)$, $\rho_{3}(1690)$
- Acceptance: corrections included (2004: ~60%, rather flat, 2008: similar for charged, neutral not yet)

Step 1) Mass independent PWA: (40MeV/c² bins, 52+1 partial waves)

$$\sigma_{indep}(\tau, m, t') = \sum_{\epsilon = \pm 1} \sum_{r=1}^{N_r} \left| \sum_i T_{ir}^{\epsilon} f_i^{\epsilon}(t') \psi_i^{\epsilon}(\tau, m) / \sqrt{\int \left| \psi_i^{\epsilon}(\tau', m) \right|^2 d\tau'} \right|^2$$

• Production amplitudes $T_{ir}^{\epsilon} \rightarrow$ extended maximum likelihood fit

• Decay amplitudes $\psi_i^{\epsilon}(\tau, m)$ (Zemach tensors, D functions)

PWA using isobar model

Partial wave analysis:

- program: Illinois/Protvino/Munich (D.Ryabchikov) software (IHEP/VES, TUM/COMPASS)
- Isobars: $(\pi\pi)_{S}$ [broad $f_{0}(600)+f_{0}(1370)$], $f_{0}(980)$, $\rho(770)$, $f_{2}(1270)$, $\rho_{3}(1690)$
- Acceptance: corrections included (2004: ~60%, rather flat, 2008: similar for charged)

Step 1) Mass independent PWA: (40MeV/c² bins, 52+1 partial waves)

Step 2) Mass dependent χ^2 **fit:** (to mass independent result)

- Main partial waves chosen, parameterised by Breit-Wigner
- Coherent background for some waves

PWA using isobar model

Partial wave analysis:

- program: Illinois/Protvino/Munich (D.Ryabchikov) software (IHEP/VES, TUM/COMPASS)
- Isobars: $(\pi\pi)_{S}$ [broad $f_{0}(600)+f_{0}(1370)$], $f_{0}(980)$, $\rho(770)$, $f_{2}(1270)$, $\rho_{3}(1690)$
- Acceptance: corrections included (2004: ~60%, rather flat, 2008: similar for charged)

Step 1) Mass independent PWA: (40MeV/c² bins, 52+1 partial waves)

= following results

- Step 2) Mass dependent γ^2 fit: (to mass independent result)
- Main partial waves chosen, parameterised by Breit-Wigner
- Coherent background for some waves

First comparison: Neutral vs. charged mode Mass independent PWA results

-- normalisation --

OMPA

Diffractive dissociation into 3π – neutral vs. charged mode

17/06/2011

Isospin symmetry: neutral / charged mode

- **X**⁻ decaying into $\rho \pi$: 1/1 intensity expected
- X^- decaying into $f_2 \pi$: 1/2 intensity expected

Isospin symmetry: neutral / charged mode

- **X**⁻ decaying into $\rho \pi$: 1/1 intensity expected
- X^- decaying into $f_2 \pi$: 1/2 intensity expected

General: Branching not entirely determined by Clebsch-Gordon coeff., but also <u>Bose-Symmetrisation</u> with the bachelor π : => <u>no effect</u> for resonances decaying into $\rho\pi$ (same effect) => BR <u>might differ</u> for resonances going to $\mathbf{f}_{0,2}\pi$

Isospin symmetry: neutral / charged mode

- **X**⁻ decaying into $\rho \pi$: 1/1 intensity expected
- X^- decaying into $f_2 \pi$: 1/2 intensity expected

General: Branching not entirely determined by Clebsch-Gordon coeff.,

but also <u>Bose-Symmetrisation</u> with the bachelor π :

 \Rightarrow <u>no effect</u> for resonances decaying into $\rho\pi$ (same effect)

=> BR <u>might differ</u> for resonances going to $f_{0,2}\pi$

Checked by calculation:

 $BR = N(\pi^{-}\pi^{0}\pi^{0})/N(\pi^{-}\pi^{-}\pi^{+}) - \text{calculated from isobar model amplitudes}$ $BR(0^{-+}f_{0}(980)\pi S) = 0.44 \text{ (at 1.8 GeV)}$ $BR(1^{++}(\pi\pi)_{s}\pi P) = 0.80 \text{ (at 1.3 GeV)}$

BR($2^{-+}f_2(1270)\pi S$) = 0.50 (at 1.67 GeV)

Selected partial waves isospin symmetry check ctd.

BR = N($\pi^{-}\pi^{0}\pi^{0}$)/N($\pi^{-}\pi^{-}\pi^{+}$) – calculated	from isobar model amplitudes
BR($0^{-+}f_0(980)\pi S$) = 0.44 (at 1.8 GeV)	
BR($1^{++}(\pi\pi)_s\pi P$) = 0.80 (at 1.3 GeV)	in fair agreement
BR($2^{-+}f_2(1270)\pi S$) = 0.50 (at 1.67 GeV)	J with our data

Two sets of partial wave totals 3π diffractive -- Neutral vs. Charged mode: 53 waves

Spin totals show isospin symmetry:

Selected partial waves isospin symmetry check ctd.

Frank Nerling

Selected partial waves isospin symmetry check ctd.

Selected partial waves & phases 3π diffractive -- Neutral vs. Charged mode: 53 waves

Frank Nerling

Selected partial waves & phases 3π diffractive -- Neutral vs. Charged mode: 53 waves

Frank Nerling

Frank Nerling

Selected partial waves & phases 3π diffractive -- Neutral vs. Charged mode: 53 waves

Frank Nerling

Frank Nerling

Summary & conclusions

COMPASS: high potential for spin-exotic search

- ✓ 2008/09: Data taken with hadron beams on proton & nuclear targets
- ✓ Very high statistics (1-2 orders of magnitude x world statistics)

COMPASS measures Neutral & Charged channels

- ✓ First results on 3π final states 2008 data (diffr. dissociation)
- ✓ Comparison $\pi^-\pi^0\pi^0$ vs. $\pi^-\pi^+\pi^-$ final states quite promising:

→ Mass-independent PWA: isospin symmetry

 \rightarrow main & small waves <u>consistently</u> seen \rightarrow intensities & <u>phases</u>

 \rightarrow also angular distributions (GFJ: cos θ , Φ_{TY})

=> Independent confirmation of new states within same experiment!

(competing statstics with BNL, E852 re-analysis [Dzierba et al., 2006])

Outlook:

- Acceptance corrections for neutral mode (before showing any signal in exotic 1-+ wave)
- Dedicated leakage & background studies
- Further development of PWA model
- Mass-dependent PWA

Additional material

Selected partial waves & phases 3π diffractive -- Neutral vs. Charged mode: 53 waves

Frank Nerling

Decay angles in G.J. frame: Full PhaseSpace Generated Prediction vs. fitted data

Frank Nerling

Decay angles in G.J. frame Full PhaseSpace Generated Prediction

First PWA fits on $\pi - \pi^{\circ} \pi^{\circ}$

Theoretical expectation: neutral / charge mode

- isobar decay into f2 π : 1/2 intensity expected
- isobar decay into $\rho \pi$: 1/1 intensity expected

First PWA fits on $\pi - \pi^{\circ} \pi^{\circ}$

Theoretical expectation: neutral / charge mode

- isobar decay into f2 π : 1/2 intensity expected
- isobar decay into $\rho \pi$: 1/1 intensity expected

Waveset used for the PWA

	$J^{PC}M^{\epsilon}$	L	Isobar π	Treshold (GeV/c^2)					
-	$0^{-+}0^{+}$	S	$f_0(980)\pi$	1.25					
	$0^{-+}0^{+}$	S	$(\pi\pi)_s\pi$	-					
	$0^{-+}0^{+}$	P	$ ho\pi$	-					
-	$1^{-+}1^{+}$	P	$\rho\pi$	-					
-	$1^{++}0^{+}$	S	$\rho\pi$	-					
	$1^{++}0^{+}$	P	$f_2\pi$	1.20		$2^{++}1^{+}$	P	$f_2\pi$	1.20
	$1^{++}0^{+}$	P	$(\pi\pi)_s\pi$	0.94	\rightarrow	$2^{++}1^{+}$	D	$ ho\pi$	-
	$1^{++}0^{+}$	D	$\rho\pi$	1.30		$3^{++}0^{+}$	S	$ ho_3 \pi$	1.76
	$1^{++}1^{+}$	S	$ ho\pi$	-		$3^{++}0^{+}$	$\left \begin{array}{c} P \\ D \end{array} \right $	$f_2\pi$	1.20
	$1^{++}1^{+}$	P	$f_2\pi$	1.40		$3^{++}1^{+}$	$\begin{bmatrix} D\\S \end{bmatrix}$	$\rho_{3}\pi$	$1.20 \\ 1.76$
	$1^{++}1^{+}$	P	$(\pi\pi)_s\pi$	1.20		$3^{++}1^{+}$	P	$f_2\pi$	1.20
	$1^{++}1^{+}$	D	$\rho\pi$	1.40		3++1+	D	$ ho\pi$	1.50
	$2^{-+}0^{+}$	S	$f_2\pi$	1.20		$4^{-+}0^{+}$	$\begin{bmatrix} F \\ F \end{bmatrix}$	$\rho\pi$	1.00
	$2^{-+}0^{+}$	P	$\rho\pi$	0.80		$\frac{4}{4^{++}1^{+}}$	$\frac{\Gamma}{F}$	$\frac{\rho \pi}{f_2 \pi}$	1.20
	$2^{-+}0^{+}$	D	$(\pi\pi)_s\pi$	0.80	-	$4^{++}1^{+}$	G	$\rho\pi$	1.40
	$2^{-+}0^{+}$	D	$f_2\pi$	1.50		1-+0-	P	$\rho\pi$	-
	$2^{-+}0^{+}$	F	$\rho\pi$	1.20		1-+1-	P	$ ho\pi$	-
	$2^{-+}1^{+}$	S	$f_2\pi$	1.20		1^{++1} $2^{-+1^{-}}$	S	$ ho\pi$	- 1.20
	$2^{-+}1^{+}$	P	$\rho\pi$	0.80		$2^{++}0^{-}$	$\begin{array}{c} D \\ P \end{array}$	$f_2\pi$	1.20 1.30
	$2^{-+}1^{+}$	D	$(\pi\pi)_s\pi$	1.20		$2^{++}0^{-}$	D	$\rho\pi$	-
	$2^{-+}1^{+}$	D	$f_2\pi$	1.50		$2^{++}1^{-}$	P	$f_2\pi$	1.30
	$2^{-+}1^{+}$	F	$\rho\pi$	1.20		FLAT			

Table 5: List of the 42 waves used for the mass independent PWA

Updated PWA model: 53waves

$J^{PC}M^\epsilon$	L	Isobar π	Treshold (GeV/c^2)	
$0^{-+}0^{+}$	S	$f_0(980)\pi$	1.25	
$0^{-+}0^{+}$	S	$(\pi\pi)_s\pi$	-	
$0^{-+}0^{+}$	P	$\rho\pi$	-	
$1^{-+}1^{+}$	P	$\rho\pi$	-	
$1^{++}0^{+}$	S	$\rho\pi$	-	
$1^{++}0^{+}$	P	$f_2\pi$	1.20	
$1^{++}0^{+}$	P	$(\pi\pi)_s\pi$	0.94	
$1^{++}0^{+}$	D	$ ho\pi$	1.30	
$1^{++}1^{+}$	S	$\rho\pi$	-	
$1^{++}1^{+}$	P	$f_2\pi$	1.40	
$1^{++}1^{+}$	P	$(\pi\pi)_s\pi$	1.20	
$1^{++}1^{+}$	D	$\rho\pi$	1.40	
$2^{-+}0^{+}$	S	$f_2\pi$	1.20	
$2^{-+}0^{+}$	P	$\rho\pi$	0.80	
$2^{-+}0^{+}$	D	$(\pi\pi)_s\pi$	0.80	
$2^{-+}0^{+}$	D	$f_2\pi$	1.50	
$2^{-+}0^{+}$	F	$\rho\pi$	1.20	Table 5: List of the
$2^{-+}1^{+}$	S	$f_2\pi$	1.20	
$2^{-+}1^{+}$	P	$ ho\pi$	0.80	
$2^{-+}1^{+}$	D	$(\pi\pi)_s\pi$	1.20	
$2^{-+}1^{+}$	D	$f_2\pi$	1.50	
$2^{-+}1^{+}$	F	$ ho\pi$	1.20	
42	Wſ	iveset	extended h	v 11 wave

_			
$2^{++}1^{+}$	P	$f_2\pi$	1.20
$2^{++}1^{+}$	D	$ ho\pi$	-
$3^{++}0^{+}$	S	$\rho_3 \pi$	1.76
$3^{++}0^{+}$	P	$f_2\pi$	1.20
$3^{++}0^{+}$	D	$ ho\pi$	1.20
$3^{++}1^{+}$	S	$ ho_3\pi$	1.76
$3^{++}1^{+}$	P	$f_2\pi$	1.20
$3^{++}1^{+}$	D	$ ho\pi$	1.50
$4^{-+}0^{+}$	F	$ ho\pi$	1.00
$4^{-+}1^{+}$	F	$ ho\pi$	1.20
$4^{++}1^{+}$	F	$f_2\pi$	1.60
$4^{++}1^{+}$	G	$ ho\pi$	1.40
$1^{-+}0^{-}$	P	$\rho\pi$	-
$1^{-+}1^{-}$	P	$ ho\pi$	-
$1^{++}1^{-}$	S	$ ho\pi$	-
$2^{-+}1^{}$	S	$f_2\pi$	1.20
$2^{++}0^{-}$	P	$f_2\pi$	1.30
$2^{++}0^{-}$	D	$ ho\pi$	-
$2^{++}1^{-}$	P	$f_2\pi$	1.30
FLAT			

Table 5: List of the 42 waves used for the mass independent PWA.(Table for Release)

1-(0-+)0+ f0(1500) pi S
 1-(2++)2+ rho pi D
 1-(2-+)2+ f2 pi S
 1-(5++)0+ rho pi G
 1-(6-+)0+ rho pi H
 1-(0-+)0+ f2 pi D
 1-(1-+)1+ f2 pi D
 1-(2-+)0+ rho3 pi P
 1-(3++)0+ f0(1400) pi F
 1-(1++)0+ f0(980) pi P
 1-(2-+)0+ f0(980) pi D

Event selection: $\pi^- p \rightarrow \pi^- \pi^0 \pi^0 p$

~10% of 2008 data

Type of cut applied	Nb of events	Remaining [%]
All events	$6.98800 imes10^8$	100.00
DT0	$5.07415 imes10^8$	72.61
NbPV==1	$4.02453 imes10^8$	57.59
NbOutPar==1	2.25624×10^{8}	32.29
TargetCut	$1.80785 imes10^8$	25.87
ChargeSum	$1.76766 imes10^8$	25.30
$N_{\gamma} == 4$	$9.75743 imes10^6$	1.40
$2\pi^0$ within $m_{\pi^0}(PDG) \pm 20 \text{ MeV}$	$9.15084 imes 10^{5}$	0.13
exactly one $2\pi^0$ combination within $m_{\pi^0}(\text{PDG}) \pm 20 \text{MeV}$	$8.99705 imes10^5$	0.13

Table 1: Remaining statistics after cuts - Preselection.

Type of cut applied	Nb of events Remaining [%]		
All events - preselected	Main cuts for exclusive events:		
$E_{} < 185 { m GeV/c^2}$			
${ m RPDtracks} = 1 \&\& p_{ m recoil} > 250 { m MeV}$	=> in terms of sigma ($\pm 2\sigma$)		
$\Delta \Phi < 0.2$	$3.95250 \times 10^{\circ}$ 43.93		
Tigthened cut on π^0 mass $(m_{\pi^0}(\text{PDG}) \pm 16 \text{ MeV})$	3.25001×10^5 36.12		
Exclusivity $\pm 6 \text{GeV}$	2.41406×10^5 26.83		
CEDAR Veto on Kaons	2.39511×10^5 26.62		

Table 2: Remaining statistics after further cuts applied on preselected events, cf. Tab.1 - Final Selection.

Frank Nerling

All & Preselected gg pairs, circular cut on PDG π^0 mass

 $2\pi^0$ evt := exactly 4 clusters, exactly one $2\pi^0$ combi within PDG +- 20 MeV

$\Delta \Phi$ (RPD-Spectro) vs. E_{beam}

$\Delta \Phi$ (RPD-Spectro) vs. E_{beam}

COMPASS spectrometer: Hadron setup 2008/09

- of each distribution after the other two cuts applied

Main cuts for exclusive events in terms of resolutions, 2σ : (a) π° mass cut = 16 MeV (b) RPD $\Delta phi = 0.2$ rad (c) Exclusivity = 6 GeV

t' distribution

Mass spectrum of $\pi - \pi^{\circ} \pi^{\circ}$ **final state**

Mass spectrum: $\pi^{\circ}\pi^{\circ}$ **systems**

