The Two Nucleon System in Chiral
Effective Field Theory:
Searching for the Power Counting

M. Pavon Valderrama

Instituto de Fisica Corpuscular (IFIC), Valencia

Hadron 2011, Munich, June 2011



Contents

The NN Potential in ChPT (Weinberg Counting):

Power Counting in the Chiral NN Potentials.
However, breakdown of counting in NN Observables.

Building a Power Counting for the Two-Nucleon System:

Perturbative Treatment of NLO and N“LO
Cut-off independence: modifications to W counting.
Results for S- and P-waves.

Conclusions

Based on: PRC83, 024003 (2011), arXiv:0912.0699

° °
Perturbative Two Pion Exchange — p. 2



The Nucleon-Nucleon Chiral Potential (1)

The nuclear force is a fundamental problem in nuclear physics
Many phenomenological descriptions available which are,
however, not grounded in QCD.

Chiral Perturbation Theory (Weinberg counting):

Problem: NN interaction is non-perturbative
Weinberg’s solution:

apply ChPT to construct the nuclear potential
(instead of the scattering amplitude)

Insert the potential into the Schrodinger equation,
as traditionally done in nuclear physics.
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The Nucleon-Nucleon Chiral Potential (1)

The nuclear force is a fundamental problem in nuclear physics

Many phenomenological descriptions available which are,
however, not grounded in QCD.

Chiral Perturbation Theory (Weinberg counting):

Weinberg (90); Ray, Ordoinez, van Kolck (93,94); etc.
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The Nucleon-Nucleon Chiral Potential (I1)

The two essential ingredients:

Chiral Symmetry provides the connection with QCD.
It constraints the nature of pion exchanges (specially TPE).

Power counting allows to express the NN potential as a low
energy expansion in terms of a ratio of scales Q) /Ay:

Q ~ |q] ~ p~my; ~ 100 — 200 MeV (low energy scale)
Ao ~m, ~ My ~4nfr ~ 0.5 —1GeV (high energy scale)

The resulting potential should convergence quickly at low
energies / large distances (and diverge at high energies).

Power counting is essential for having a systematic scheme!
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The Nucleon-Nucleon Chiral Potential (11l

The NN chiral potential in coordinate space:

At long distances power counting implies:
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The Nucleon-Nucleon Chiral Potential (1V)

However, at short distances the situation is just the opposite:

... as can be checked in coordinate space:

0.7 0.8 0.9 1 1.1 1.2 1.3 14 15
r [fm]
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The Nucleon-Nucleon Chiral Potential (V)

However, at short distances the situation is just the opposite:

In fact, on dimensional grounds we expect the following behaviour:

1
V 2.3
Af rotY

This problem is usually dealt with by a renormalization procedure:

) @N\fﬂ:ﬂ 4y or v (7~

X ,pions AO m., X ,pions

including a cut-off r. or A (~ 7 /2r.) in the computations

the counterterms, which partly absorb the bad behaviour of the
potential at scales of the order of the cut-off
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Weinberg Counting: Description

Potential expanded according to counting:
V=vO4v® 4L vE L 0@Q*/A})
The potential is conveniently regularized and iterated:

Vv o= Vi
T = VE+VEGT

Counterterms are fitted to reproduce scattering observables.

Great phenomenological success at N°LO! (x?/d.o.f. ~ 1)
Entem, Machleidt (03); Epelbaum, Gldckle, Meil3ner (05)

But there are problems, like the cut-off issue, the power counting issue
or the sistematicity issue (Nogga, Timmermans, van Kolck (05); Birse (05);
Epelbaum, MeiRRner (06); Epelbaum, Gegelia (09); Entem, Machleidt (10); etc.).
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Weinberg Counting: Problems ()

However...

Do observables follow a power counting?

The Weinberg prescription prodives a counting for the potential,
which is not an observable.

There has not been any systematic effort to determine whether
the resulting scattering observables follow the power counting.

Without this ingredient, the Weinberg prescription would merely
be a (useful) recipe for constructing nuclear potentials.

Iteration can play very ugly tricks with us.
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Weinberg Counting: Problems (Il)

The interesting question is whether power counting is preserved in
observables:

T=TO 4+ 7@ 4+ 7C) L OQ3/A3)?

So what can fail? The contribution of subleading pieces can eventually
grow larger than the leading ones, spoiling the counting.

Why? Chiral potentials are increasingly singular!
(@) A small enough: 7@ > 7@ > 76) »
(b) A large enough: T < 7(®) <« TG) < . (or whatever)

In Weinberg A ~ 0.5 GeV: is that within (a) or (b)?
Not everyone agrees on this view: see Epelbaum, Meil3ner (06) for an example.
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Weinberg Counting: an Example (1)

The previous guestion can be answered by doing some computations:
Weinberg at N2LO with a gaussian cut-off A = 400 MeV
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Weinberg Counting: an Example (II)

Answer: if the subleading contributions to the scattering amplitude are
small, we should be able to approximate them in perturbation theory.

The scattering amplitude should behave as:

@O0

Perturbative

Non-pertu rbative
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Weinberg Counting: an Example (II)

Answer: if the subleading contributions to the scattering amplitude are
small, we should be able to approximate them in perturbation theory.

The previous scheme leads to the following approximations:
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Weinberg Counting: an Example (ll)

However, the situation is even more paradoxical than we can expect.

We can try a different approximation...

° @ @+@+

Pertu rbatlve

Non—pertu rbative

(different choices are possible depending on the regulator, the cut-off,
the value of the chiral couplings, etc.)
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Weinberg Counting: an Example (lll)

However, the situation is even more paradoxical than we can expect.

... Which gives us the following phase shifts

L(non-pert) —-—

100 150 200 250 300
Kem [MeV] (b)

The original assumptions made by the power counting are completely
broken by the results, which obey a different counting instead.

See related comments in Lepage (97).
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Overcoming the Inconsistencies

Lesson: don't iterate unless you are sure what you are doing!

Power counting inconsistencies avoided by enforcing the counting, that
IS, treating the subleading pieces of the potential as perturbations:

7O — yO L yOqg,70
7? = v 41706, v3 1+ v qg,70

and now (i) T3 oc V@ (i) T = T + T2 1 O(Q3/A3).

Recent examples are given by Shukla, Phillips, Mortenson (07) and
the EFT lattice computations by Epelbaum, Krebs, Lee, Meil3ner.
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Perturbative Weinberg (1)

However, there is still a problem with cut-off dependence:

1.0 fm
0.8 fm
0.6 fm
0.5 fm
0.4 fm
0.3 fm
Nijm2

ijm
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Perturbative Weinberg (I1)

By analyzing the cut-off dependence of the T-matrix in the singlet
channel we find the following
T(A) =TO(A) + T®(A) + TP(A) +0(Q*/Ap)
N——

N——
~log A ~A

Problem: the Weinberg counting counterterms
Viceontact = Co + C2 (5 + %) + O(Q*/A9)

X ,contact

are not enough to render the amplitudes cut-off independent.

Solution: promote the C, counterterm (which is Q* in Weinberg)
to order Q° to achieve cut-off independence (Birse 05/10).
Vysontact = Co + Co (5" +p%) + Ca (0" + '*) + O(Q*/A})
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Perturbative Weinberg (l1)

Can be illustrated by the following N?LO results in the singlet:

(a) with the Weinberg counterterms Cy and Cs (A ~ k*/r.)
(b) with the additional counterterm Cy (A ~ k° r.)
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Modified Perturbative Weinberg

(a) Modify the counting to allow renormalizability at leading order.

Nogga, Timmermans and van Kolck (05)
(b) Only fully iterate OPE if necessary: s- and p-waves (generally).

Minimally 1Sy, 2S;, Py and additionally 3 P,, 3Ds.

d-waves (and beyond) are already perturbative (Kaiser,
Brockmann, Weise (97)); however, the subleading iterations of
OPE can make the calculations cumbersome.

(c) Subleading corrections (TPE) treated pertubatively: counting
rules determined by perturbative renormalizability.

(a), (b) and (c) corresponds to the Nogga et al. proposal.

(b) and (c) guarantee, by construction, the power counting.

° ° ° ° ° ° ° ) °
Perturbative Two Pion Exchange — p. 17



Perturbation Theory: Power Counting (I)

The power counting resulting from the previous scheme:

155 : 3 CT’s at NLO and N2LO (4 at N3LO).

36 —3D; : 6 CT's at NLO / N2LO / N3LO
(could be reduced by treating d-wave perturbatively).

1P, : 1 CT at NLO and N?LO (2 at N°LO).
3P, 1 1 CT at NLO and N2LO (2 at N°LO)..
3Py : 2 CT at NLO /N?LO / N3LO

3P, —3F, : 6 CT's at NLO / N°LO / N3LO if OPE was iterated at
LO (otherwise 1 CT at NLO / N2LO, 3 at N°LO).
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Perturbation Theory: Power Counting (Il)

Partly equivalent to Birse’s proposal for a power counting.
Minor departures in particular waves.
Less counterterms at higher orders in triplets.
The interesting point is what happens with D-wave triplets.
(same counting as P-waves according to Birse)
The number of counterterms (free parameters) at LO, NLO and
N2LO is larger than in original Weinberg.
In principle, less predictive power. However...
...the perturbative counting catches up Weinberg's at N°LO.
(that Is, there are only more CT'’s at intermediate orders)

Is there a merging with standard Weinberg counting at N3LO?
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Perturbation Theory: Results

Central Waves

The following values have been taken:

fr=92.4MeV, m, = 138.04MeV, di1g = —0.97 GeV?
¢ =—081GeV ! c3=-34GeV ! ¢y =34GeV!

1/My corrections included at N*LO
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Perturbation Theory: 1S

0] 50 100 150 200 250 300 350
Ke m. [MeV]

r. =0.6 —0.9fm (~ 350 — 500 MeV), 3 CT's, fit between
kemm = 40 — 160 MeV, dashed blue: r. = 0.1 fm,
light blue: N2LO results from Epelbaum et al. (Weinberg counting)
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Perturbation Theory: °S;

0 50 100 150 200 250 300 350
Ke m. [MeV] (a)

r. = 0.6 —0.9fm (~ 350 — 500 MeV), 2 CT’s, fit between
kemn = 40 — 160 MeV, dashed blue: r. = 0.3fm

° ° ° ° ° ° ° ) °
Perturbative Two Pion Exchange — p. 22



Perturbation Theory: E;

0] 50 100 150 200 250 300 350
Ke m. [MeV] (b)

r. =0.6 —0.9fm (~ 350 — 500 MeV), 2 CT’s, fit between
kem = 40 — 160 MeV.
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Perturbation Theory: °D,

0 50 100 150 200 250 300 350
Ke m. [MeV] (©)

r. =0.6 —0.9fm (~ 350 — 500 MeV), 2 CT’s, fit between
kem = 40 — 160 MeV.
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Perturbation Theory: Results

P-Waves

Caution: Preliminary Results
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Perturbation Theory: P,

0] 50 100 150 200 250 300 350
Kem [MeV]

r. = 0.6 — 0.9fm (~ 500 — 800 MeV), 1 CT, fit between
kem = 100 — 200 MeV.
1 P, very sensitive to the choice of chiral couplings!
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Perturbation Theory: °P,

0] 50 100 150 200 250 300 350
Kem [MeV]

r. =0.6 —0.9fm (~ 500 — 800 MeV), 2 CT'’s, fit between
kem = 100 — 200 MeV.
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Perturbation Theory: °P,

-15

-20

-25
0] 50 100 150 200 250 300 350

Kem [MeV]

r. = 0.6 — 0.9fm (~ 500 — 800 MeV), 1 CT, fit between
kem = 100 — 200 MeV.
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Perturbation Theory: °P;

50 100 150 200 250 300 350
ke m. [MeV] (d)

r. =0.6 —0.9fm (~ 500 — 800 MeV), 2 CT'’s, fit between
kem = 100 — 200 MeV.
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50 100 150 200 250 300 350 50 100 150 200 250 300
Ke.m [MeV] Kem [MeV]  (a)

Nijm2
LO
NLO
NNLO

50 100 150 200 250 300 350 0 50 100 150 200 250 300 350
Ke.m. [MeV] (b) Ke.m. [MeV] (c)
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— Nijm2
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s \NNLO

50 100 150 200 250 300 350
Ke.m. [MeV]

50 100 150 200 250 300 350
Ke.m. [MeV]

\

50 100 150 200 250 300 350
Ke.m. [MeV]

100 150 200 250 300 350
Kem. [MeV] (d)
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Final Remarks and Conclusions (1)

Chiral Two Pion Exchange is perturbatively renormalizable.
A consistent power counting emerges from renormalizability.
Some problematic issues of Weinberg counting are avoided.

S- and P-waves are well-reproduced up to & ~ 300 — 350 MeV.
There is a well.defined convergence pattern.

The residual cut-off dependence is nominally a higher order effect:

Consistent interpretation requires the cut-off to be a
separation scale: m, < A(~ 1/r.) < Ap.

Error estimations based on variations of the cut-off around the
purported hard (r. ~ 0.5 fm) and light scale (r. ~ 1.0 fm).

Convergence of the EFT expansion also requires r. > 0.5 fm
(the chiral potentials may diverge at shorter distances).
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Final Remarks and Conclusions (ll)

Convergence rate and expansion parameter can be determined:

Scaling of the residual short range interaction at a given order:
this is the deconstruction method by Birse, which yields
Singlets: Ay s >~ 270MeV, giving z >~ 0.5
Triplets: Ag; ~ 340 MeV, giving z ~ 0.4
Birse (07, 10); Ipson, Helmke, Birse (10)

(i) This may look slow, however §®) « (Q/Ay)"“ ), meaning that

the relative error for the N?LO calculation at £ = m.. is 3% in the
singlet (1% in the triplets).

(i) The breakdown scale could have been anticipated on sigma
and rho exchange, yielding Ag s = m,/2 and Ay ; = m, /2.
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