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The Nucleon-Nucleon Chiral Potential (I)

• The nuclear force is a fundamental problem in nuclear physics
• Many phenomenological descriptions available which are,

however, not grounded in QCD.

• Chiral Perturbation Theory (Weinberg counting):

• Problem: NN interaction is non-perturbative
• Weinberg’s solution:

• apply ChPT to construct the nuclear potential
(instead of the scattering amplitude)

• insert the potential into the Schrödinger equation,
as traditionally done in nuclear physics.
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The Nucleon-Nucleon Chiral Potential (I)

• The nuclear force is a fundamental problem in nuclear physics
• Many phenomenological descriptions available which are,

however, not grounded in QCD.

• Chiral Perturbation Theory (Weinberg counting):

VNN =

+

+

+

+ +

+ . . .+

O(Q0)

O(Q2)

Weinberg (90); Ray, Ordoñez, van Kolck (93,94); etc.
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The Nucleon-Nucleon Chiral Potential (II)

The two essential ingredients:

• Chiral Symmetry provides the connection with QCD.
It constraints the nature of pion exchanges (specially TPE).

• Power counting allows to express the NN potential as a low
energy expansion in terms of a ratio of scales Q/Λ0:

Vχ(~q) = V (0)
χ (~q) + V (2)

χ (~q) + V (3)
χ (~q) +O(

Q4

Λ4
0

)

Q ∼ |~q| ∼ p ∼ mπ ∼ 100− 200MeV (low energy scale)
Λ0 ∼ mρ ∼ MN ∼ 4πfπ ∼ 0.5− 1GeV (high energy scale)

The resulting potential should convergence quickly at low
energies / large distances (and diverge at high energies).

Power counting is essential for having a systematic scheme!
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The Nucleon-Nucleon Chiral Potential (III)

The NN chiral potential in coordinate space:
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At long distances power counting implies:
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The Nucleon-Nucleon Chiral Potential (IV)

However, at short distances the situation is just the opposite:

... as can be checked in coordinate space:
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The Nucleon-Nucleon Chiral Potential (IV)

However, at short distances the situation is just the opposite:

In fact, on dimensional grounds we expect the following behaviour:

V
(ν)
χ,pions(~q) ∼

|~q|ν

Λν
0

f(
|~q|

mπ

) or V
(ν)
χ,pions(~r) ∼

1

Λν
0 r

3+ν

This problem is usually dealt with by a renormalization procedure:

• including a cut-off rc or Λ (≃ π/2rc) in the computations

• the counterterms, which partly absorb the bad behaviour of the
potential at scales of the order of the cut-off
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Weinberg Counting: Description

• Potential expanded according to counting:

V = V (0) + V (2) + V (3) +O(Q4/Λ4
0)

• The potential is conveniently regularized and iterated:

V → V R
Λ

T = V R
Λ + V R

Λ G0 T

• Counterterms are fitted to reproduce scattering observables.

• Great phenomenological success at N3LO! (χ2/d.o.f. ≃ 1)
Entem, Machleidt (03); Epelbaum, Glöckle, Meißner (05)

But there are problems, like the cut-off issue, the power counting issue
or the sistematicity issue (Nogga, Timmermans, van Kolck (05); Birse (05);

Epelbaum, Meißner (06); Epelbaum, Gegelia (09); Entem, Machleidt (10); etc.).
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Weinberg Counting: Problems (I)

However...

Do observables follow a power counting?

• The Weinberg prescription prodives a counting for the potential,
which is not an observable.

• There has not been any systematic effort to determine whether
the resulting scattering observables follow the power counting.

• Without this ingredient, the Weinberg prescription would merely
be a (useful) recipe for constructing nuclear potentials.

• Iteration can play very ugly tricks with us.
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Weinberg Counting: Problems (II)

The interesting question is whether power counting is preserved in
observables:

T = T (0) + T (2) + T (3) +O(Q3/Λ3
0) ?

So what can fail? The contribution of subleading pieces can eventually
grow larger than the leading ones, spoiling the counting.

Why? Chiral potentials are increasingly singular!

(a) Λ small enough: T (0) > T (2) > T (3) > . . .

(b) Λ large enough: T (0) < T (2) < T (3) < . . . (or whatever)

In Weinberg Λ ∼ 0.5GeV: is that within (a) or (b)?

Not everyone agrees on this view: see Epelbaum, Meißner (06) for an example.
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Weinberg Counting: an Example (I)

The previous question can be answered by doing some computations:
Weinberg at N2LO with a gaussian cut-off Λ = 400MeV
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Which piece of the chiral long range interaction dominates?
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Weinberg Counting: an Example (II)

Answer: if the subleading contributions to the scattering amplitude are
small, we should be able to approximate them in perturbation theory.

The scattering amplitude should behave as:
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Weinberg Counting: an Example (II)

Answer: if the subleading contributions to the scattering amplitude are
small, we should be able to approximate them in perturbation theory.

The previous scheme leads to the following approximations:
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Power counting is already lost at k ∼ 100MeV !!!.
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Weinberg Counting: an Example (III)

However, the situation is even more paradoxical than we can expect.

We can try a different approximation...

(different choices are possible depending on the regulator, the cut-off,
the value of the chiral couplings, etc.)
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Weinberg Counting: an Example (III)

However, the situation is even more paradoxical than we can expect.

... which gives us the following phase shifts
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The original assumptions made by the power counting are completely
broken by the results, which obey a different counting instead.
See related comments in Lepage (97).
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Overcoming the Inconsistencies

Lesson: don’t iterate unless you are sure what you are doing!

Power counting inconsistencies avoided by enforcing the counting, that
is, treating the subleading pieces of the potential as perturbations:

T (0) = V (0) + V (0) G0 T
(0)

T (2) = V (2) + T (0) G0 V
(2) + V (2) G0 T

(0)

. . . = . . .

and now (i) T (2) ∝ V (2), (ii) T = T (0) + T (2) +O(Q3/Λ3
0).

Recent examples are given by Shukla, Phillips, Mortenson (07) and
the EFT lattice computations by Epelbaum, Krebs, Lee, Meißner.
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Perturbative Weinberg (I)

However, there is still a problem with cut-off dependence:
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Perturbative Weinberg (II)

By analyzing the cut-off dependence of the T-matrix in the singlet
channel we find the following

T (Λ) = T (0)(Λ) + T (2)(Λ)
︸ ︷︷ ︸

∼log Λ

+T (3)(Λ)
︸ ︷︷ ︸

∼Λ

+O(Q4/Λ4
0)

• Problem: the Weinberg counting counterterms

V
(2,3)
χ,contact = C0 + C2 (p

2 + p′2) +O(Q4/Λ4
0)

are not enough to render the amplitudes cut-off independent.

• Solution: promote the C4 counterterm (which is Q4 in Weinberg)
to order Q2 to achieve cut-off independence (Birse 05/10).

V
(2,3)
χ,contact = C0 + C2 (p

2 + p′2) + C4 (p
4 + p′4) +O(Q4/Λ4

0)
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Perturbative Weinberg (III)

Can be illustrated by the following N2LO results in the singlet:
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(a) with the Weinberg counterterms C0 and C2 (∆δ ∼ k4/rc)
(b) with the additional counterterm C4 (∆δ ∼ k6 rc)
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Modified Perturbative Weinberg

(a) Modify the counting to allow renormalizability at leading order.
Nogga, Timmermans and van Kolck (05)

(b) Only fully iterate OPE if necessary: s- and p-waves (generally).

• Minimally 1S0, 3S1, 3P0 and additionally 3P2, 3D2.
• d-waves (and beyond) are already perturbative (Kaiser,

Brockmann, Weise (97)); however, the subleading iterations of
OPE can make the calculations cumbersome.

(c) Subleading corrections (TPE) treated pertubatively: counting
rules determined by perturbative renormalizability.

(a), (b) and (c) corresponds to the Nogga et al. proposal.

(b) and (c) guarantee, by construction, the power counting.
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Perturbation Theory: Power Counting (I)

The power counting resulting from the previous scheme:

• 1S0 : 3 CT’s at NLO and N2LO (4 at N3LO).

• 3S1 −
3D1 : 6 CT’s at NLO / N2LO / N3LO

(could be reduced by treating d-wave perturbatively).

• 1P1 : 1 CT at NLO and N2LO (2 at N3LO).

• 3P1 : 1 CT at NLO and N2LO (2 at N3LO)..

• 3P0 : 2 CT at NLO / N2LO / N3LO

• 3P2 −
3F2 : 6 CT’s at NLO / N2LO / N3LO if OPE was iterated at

LO (otherwise 1 CT at NLO / N2LO, 3 at N3LO).
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Perturbation Theory: Power Counting (II)

• Partly equivalent to Birse’s proposal for a power counting.
• Minor departures in particular waves.
• Less counterterms at higher orders in triplets.
• The interesting point is what happens with D-wave triplets.

(same counting as P-waves according to Birse)

• The number of counterterms (free parameters) at LO, NLO and
N2LO is larger than in original Weinberg.
• In principle, less predictive power. However...
• ...the perturbative counting catches up Weinberg’s at N3LO.

(that is, there are only more CT’s at intermediate orders)

• Is there a merging with standard Weinberg counting at N3LO?

Perturbative Two Pion Exchange – p. 19



Perturbation Theory: Results

Central Waves

The following values have been taken:

fπ = 92.4MeV, mπ = 138.04MeV, d18 = −0.97GeV2

c1 = −0.81GeV−1, c3 = −3.4GeV−1, c4 = 3.4GeV−1

1/MN corrections included at N2LO
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Perturbation Theory: 1S0
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kcm = 40− 160MeV, dashed blue: rc = 0.1 fm,

light blue: N2LO results from Epelbaum et al. (Weinberg counting)
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Perturbation Theory: 3S1
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Perturbation Theory: E1
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Perturbation Theory: 3D1
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Perturbation Theory: Results

P-Waves

Caution: Preliminary Results
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Perturbation Theory: 1P1
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rc = 0.6− 0.9 fm (∼ 500− 800MeV), 1 CT, fit between
kcm = 100− 200MeV.

1P1 very sensitive to the choice of chiral couplings!
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Perturbation Theory: 3P0
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Perturbation Theory: 3P1
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Perturbation Theory: 3P2
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Perturbation Theory: Overview (s-waves)

-20

 0

 20

 40

 60

 80

 0  50  100  150  200  250  300  350

δ 
[d

eg
] 

kc.m. [MeV]

1S0

Nijm2
LO

NLO
NNLO

-20
 0

 20
 40
 60
 80

 100
 120
 140
 160
 180

 0  50  100  150  200  250  300  350

δ 
[d

eg
] 

kc.m. [MeV]  (a)

3S1

Nijm2
LO

NLO
NNLO

 0

 1

 2

 3

 4

 5

 0  50  100  150  200  250  300  350

δ 
[d

eg
] 

kc.m. [MeV]  (b)

ε1

Nijm2
LO
NLO
NNLO

-25

-20

-15

-10

-5

 0

 0  50  100  150  200  250  300  350

δ 
[d

eg
] 

kc.m. [MeV]  (c)

3D1

Nijm2
LO

NLO
NNLO

Perturbative Two Pion Exchange – p. 30



Perturbation Theory: Overview (p-waves)
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Final Remarks and Conclusions (I)

• Chiral Two Pion Exchange is perturbatively renormalizable.
• A consistent power counting emerges from renormalizability.
• Some problematic issues of Weinberg counting are avoided.

• S- and P-waves are well-reproduced up to k ∼ 300− 350MeV.
• There is a well.defined convergence pattern.

• The residual cut-off dependence is nominally a higher order effect:
• Consistent interpretation requires the cut-off to be a

separation scale: mπ < Λ(∼ 1/rc) < Λ0.
• Error estimations based on variations of the cut-off around the

purported hard (rc ∼ 0.5 fm) and light scale (rc ∼ 1.0 fm).
• Convergence of the EFT expansion also requires rc > 0.5 fm

(the chiral potentials may diverge at shorter distances).
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Final Remarks and Conclusions (II)

• Convergence rate and expansion parameter can be determined:
• Scaling of the residual short range interaction at a given order:

this is the deconstruction method by Birse, which yields
• Singlets: Λ0,s ≃ 270MeV, giving x ≃ 0.5
• Triplets: Λ0,t ≃ 340MeV, giving x ≃ 0.4

Birse (07, 10); Ipson, Helmke, Birse (10)

(i) This may look slow, however δ(ν) ∝ (Q/Λ0)
(ν+1), meaning that

the relative error for the N2LO calculation at k = mπ is 3% in the
singlet (1% in the triplets).

(ii) The breakdown scale could have been anticipated on sigma
and rho exchange, yielding Λ0,s = mσ/2 and Λ0,t = mρ/2.
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