Formalism: The VV interaction $\overset{\circ}{\circ\circ}$

Results

Conclusions

A new interpretation for the $D_{s2}^*(2573)$ and the prediction of novel exotic charmed mesons

R. Molina¹, T. Branz², and E. Oset¹

¹Departamento de Física Teórica and IFIC, Centro Mixto Universidad de Valencia-CSIC, Institutos de Investigación de Paterna, Aptdo. 22085, 46071 Valencia, Spain

²Institut für Theoretische Physik, Universität Tübingen, Kepler Center for Astro and Particle Physics, Auf der Morgenstelle 14, D-72076 Tübingen, Germany

Formalism: The VV interaction

Results

Conclusions

Introduction

Formalism: The VV interaction

Convolution The *PP* decay mode

Results

Conclusions

Introduction

- Heavy quark symmetry framework (HQS): with *I* = 1 two doublets of *D_s* states are generated:
 - light quark $\rightarrow j_I = 3/2$, total angular momentum: $J^P = 1^+, 2^+$
 - light quark $\rightarrow j_l = 1/2$, total angular momentum: $J^P = 0^+, 1^+$
- The doublet with $J^P = 1^+, 2^+$ is identified with the $D_{s1}(2536)$ and $D_{s2}(2573)$ in HQS
- However, the doublet with $J^P = 0^+, 1^+$ and very broad states cannot be identified with the narrow states discovered: the $D_{s0}^*(2317)$ and the $D_{s1}(2460)$ (100 MeV lower in mass than the predictions)
- $D_{s0}^*(2317)$: strong s-wave Coupling to DK, E. van Beveren and G. Rupp, PRL (2003); Couple Channels: $D_{s0}^*(2317) \sim DK$, D. Gamermann, E. Oset, D. Strottmann, M. J. Vicente Vacas, PRD (2007); $D_{s1}(2460) \sim KD^*(\eta D_s^*)$, $D_{s1}(2536) \sim DK^*(D_s\omega)$) D. Gamermann and E. Oset, EPJA (2007)

Formalism: The VV interaction

Results

Conclusions

The VV interaction Bando, Kugo, Yamawaki

$$\mathcal{L}_{III} = -\frac{1}{4} \langle V_{\mu\nu} V^{\mu\nu} \rangle \rightarrow \mathcal{L}_{III}^{(3V)} = ig \langle (\partial_{\mu} V_{\nu} - \partial_{\nu} V_{\mu}) V^{\mu} V^{\nu} \rangle$$
$$\mathcal{L}_{III}^{(c)} = \frac{g^2}{2} \langle V_{\mu} V_{\nu} V^{\mu} V^{\nu} - V_{\nu} V_{\mu} V^{\mu} V^{\nu} \rangle$$

 $V_{\mu
u}, g$

$$egin{aligned} V_{\mu
u} &= \partial_\mu\,V_
u - \partial_
u\,V_\mu - \emph{ig}[V_\mu,\,V_
u] \ g &= rac{M_V}{2f} \end{aligned}$$

$$\begin{array}{cccc} \mathbf{V}_{\mu} \\ & \\ \begin{pmatrix} \frac{\rho^{0}}{\sqrt{2}} + \frac{\omega}{\sqrt{2}} & \rho^{+} & \mathbf{K}^{*+} \\ \rho^{-} & -\frac{\rho^{0}}{\sqrt{2}} + \frac{\omega}{\sqrt{2}} & \mathbf{K}^{*0} \\ \mathbf{K}^{*-} & \mathbf{K}^{*0} & \phi \end{pmatrix}_{\mu} \end{array}$$

uction	Formalism: The VV interaction	Results
	0 00	

The VV interaction

- The VV interaction comes from 1. a) and c)
- 1. d):
 - p-wave repulsive for equal masses (R. Molina, 2008)
 - minor component of s-wave for different masses (L. S. Geng, 2009)

Formalism: The VV interaction

Results

Conclusions

Formalism: The VV interaction

Approximation

$$\begin{split} \epsilon_{1}^{\mu} &= (0,1,0,0) \\ \epsilon_{2}^{\mu} &= (0,0,1,0) \\ \epsilon_{3}^{\mu} &= (|\vec{k}|,0,0,k^{0})/m \end{split} \qquad \begin{array}{l} k^{\mu} &= (k^{0},0,0,|\vec{k}|) \\ \vec{k}/m &\simeq 0, \\ k_{j}^{\mu} \epsilon_{\mu}^{(l)} &\simeq 0 \end{aligned} \qquad \begin{array}{l} \epsilon_{1}^{\mu} &= (0,1,0,0) \\ \epsilon_{2}^{\mu} &= (0,0,1,0) \\ \epsilon_{3}^{\mu} &= (0,0,0,1) \end{aligned}$$

Spin projectors

$$\mathcal{P}^{(0)} = \frac{1}{3} \epsilon_{\mu} \epsilon^{\mu} \epsilon_{\nu} \epsilon^{\nu}$$

$$\mathcal{P}^{(1)} = \frac{1}{2} (\epsilon_{\mu} \epsilon_{\nu} \epsilon^{\mu} \epsilon^{\nu} - \epsilon_{\mu} \epsilon_{\nu} \epsilon^{\nu} \epsilon^{\mu})$$

$$\mathcal{P}^{(2)} = \{\frac{1}{2} (\epsilon_{\mu} \epsilon_{\nu} \epsilon^{\mu} \epsilon^{\nu} + \epsilon_{\mu} \epsilon_{\nu} \epsilon^{\nu} \epsilon^{\mu}) - \frac{1}{3} \epsilon_{\alpha} \epsilon^{\alpha} \epsilon_{\beta} \epsilon^{\beta} \}$$

Formalism: The VV interaction

Results

Formalism: The VV interaction

- (a) and (b)→ Pole mass and width
- (c) → p-wave repulsive (not included)
- (d) \rightarrow Pole width

Bethe equation

$$T = [I - VG]^{-1}V$$
 $G = \int_0^{q_{max}} \frac{q^2 dq}{(2\pi)^2} \frac{\omega_1 + \omega_2}{\omega_1 \omega_2 [(P^0)^2 - (\omega_1 + \omega_2)^2 + i\epsilon]}$

Formalism: The VV interaction

Results

Conclusions

The VV interaction

- 1. $f_0(1370), f_2(1270) \sim \rho \rho$ R. Molina, D. Nicmorus and E. Oset, Phys. Rev. D **78**, 114018 (2008)
- **2.** $f_0(1370), f_0(1710), f_2(1270), f'_2(1525) \sim \rho\rho, K^*\bar{K}^*...$ $K_2^*(1430) \sim \rho K^*, \omega K^*...$ L. S. Geng and E. Oset, Phys. Rev. D **79**, 074009 (2009)
- **3.** $D^*(2640)$, $D^*_2(2460) \sim \rho(\omega)D^*$ R. Molina, H. Nagahiro, A. Hosaka and E. Oset, Phys. Rev. D **80**, 014025 (2009)
- 4. Y(3940), Z(3930), X(4160) $\sim D^* \bar{D}^*$, $D_s^* \bar{D}_s^*$ R. Molina and E. Oset, Phys. Rev. D **80**, 114013 (2009)

Formalism: The VV interaction

Results

Conclusions

The VV interaction

• C = 0; S = 1; I = 1/2(hidden charm): $D_{s}^{*}\overline{D}^{*}, J/\psi K^{*}$ • C = 1: S = -1: I = 0, 1: $D^*\bar{K}^*$ • C = 1: S = 1: I = 0: D^*K^* , $D^*_{s}\omega$, $D^*_{s}\phi$ • C = 1; S = 1; I = 1: $D^{*}K^{*}, D^{*}_{s}\rho$

• C = 1; S = 2; I = 1/2: $D_s^* K^*$ • C = 2; S = 0; I = 0, 1: $D^* D^*$ • C = 2; S = 1; I = 1/2: $D_s^* D^*$ • C = 2; S = 2; I = 0: $D_s^* D_s^*$

Formalism: The VV interaction

00

Result

Convolution

Convolution due to the width of the ρ meson ($D_s^* \rho$ channel)

$$\begin{split} \tilde{G}(s) &= \frac{1}{N} \int_{(m_{\rho}-2\Gamma_{\rho})^{2}}^{(m_{\rho}+2\Gamma_{\rho})^{2}} d\tilde{m}_{1}^{2}(-\frac{1}{\pi}) \mathcal{I}m \frac{1}{\tilde{m}_{1}^{2}-m_{\rho}^{2}+i\Gamma\tilde{m}_{1}} G(s,\tilde{m}_{1}^{2},m_{D_{s}^{*}}^{2}) \\ \Gamma(\tilde{m}) &= \Gamma_{\rho}(\frac{\tilde{m}^{2}-4m_{\pi}^{2}}{m_{\rho}^{2}-4m_{\pi}^{2}})^{3/2} \theta(\tilde{m}-2m_{\pi}) & \Gamma_{D^{*}} < 2.1 \text{ MeV} \\ \Gamma_{\rho} &= 146.2 \text{ MeV} \\ \Gamma_{K^{*}} &= 48 \text{ MeV} \end{split}$$

- The ρ^* -mass convolution gives $\Gamma \simeq 8 \text{ MeV} (D_s^* \pi \pi)$
- The K*-mass convolution gives $\Gamma \simeq 3$ MeV (or less)($D^*\pi K$)

Results

The PP decay mode

- The *PP* box diagram has only $J^P = 0^+$ and $J^P = 2^+$ quantum numbers
- We only find atractive interaction in the sectors:

-
$$C = 1; S = -1; I = 0: D^* \overline{K}^*$$

-
$$C = 1$$
; $S = 1$; $I = 0$: D^*K^* , $D^*_s\phi$,
 $D^*_s\omega$

00

- C = 1; S = 1; I = 1: D^*K^* , $D_s^*\rho$

00

Results

Conclusions

The VV interaction

Model A:

$$egin{aligned} \mathcal{F}_1(q^2) &= rac{\Lambda_b^2 - m_1^2}{\Lambda_b^2 - (k_1^0 - q^0)^2 + |ec{q}|^2}, \ \mathcal{F}_3(q^2) &= rac{\Lambda_b^2 - m_3^2}{\Lambda_b^2 - (k_3^0 - q^0)^2 + |ec{q}|^2}, \end{aligned}$$

with $q^0 = rac{s+m_2^2-m_4^2}{2\sqrt{s}}$, $ec{q}$ running variable, $\Lambda_b = 1.4, 1.5$ GeV and $g = M_
ho/2 \, f_\pi$

Model B:

$$F(q^2) = e^{((q^0)^2 - |\vec{q}|^2)/\Lambda^2}$$

with $\Lambda = 1, 1.2 \text{ GeV}, q^0 = \frac{s + m_2^2 - m_4^2}{2\sqrt{s}}, g = M_\rho/2 f_\pi, g_{D_s} = M_{D_s^*}/2 f_{D_s} = 5.47 \text{ and } g_D = g_{D^*D\pi}^{\exp} = 8.95 \text{ (experimental value)}$

Formalism: The VV interaction

Results

C = 1; S = -1; I = 0 (exotic)

• Channels:
$$D^*\bar{K}^*$$
 ($\alpha = -1.6$)

• $V \sim -10g^2$ for I = 0; J = 0, 1• $V \sim -16g^2$ for I = 0; J = 2

$I[J^P]$	$\sqrt{s_{pole}}$	$g_{D^*\bar{K}^*)}$
0[0 ⁺]	2848	12227
0[1 ⁺]	2839	13184
0[2 ⁺]	2733	17379

$I[J^P]$	$\sqrt{s}_{ m pole}$ (MeV)	Model	Γ (MeV)
0[0 ⁺]	2848	A, $\Lambda = 1400 \text{ MeV}$	23
		A, $\Lambda=1500~\text{MeV}$	30
		B, $\Lambda=1000~\text{MeV}$	25
		B, $\Lambda=1200~\text{MeV}$	59
0[1 ⁺]	2839	Convolution	3
0[2 ⁺]	2733	A, $\Lambda = 1400 \text{ MeV}$	11
		A, $\Lambda=1500~\text{MeV}$	14
		B, $\Lambda=1000~\text{MeV}$	22
		B, $\Lambda=1200~\text{MeV}$	36

Formalism: The VV interaction

Results

C = 1; S = 1; I = 0

•
$$V \sim -18g^2$$
 for
 $I = 0; J = 0, 1$

 V ~ −26g² for I = 0; J = 2

•
$$\alpha = -1.6$$

 $\Gamma_{exp} = 20 \pm 5 \text{ MeV}$

<i>I</i> [<i>J</i> ^P]	\sqrt{s} (MeV)	Model	Г (MeV)
0[0 ⁺]	2683	A, $\Lambda=1400~\text{MeV}$	20
		A, $\Lambda=1500~\text{MeV}$	25
		B, $\Lambda=1000~\text{MeV}$	44
		B, $\Lambda=1200~\text{MeV}$	71
0[1 ⁺]	2707	Convolution	$4 imes 10^{-3}$
0[1 ⁺] 0[2 ⁺]	2707 2572	$\begin{array}{l} \mbox{Convolution} \\ \mbox{A, } \Lambda = 1400 \mbox{ MeV} \end{array}$	$\frac{4 \times 10^{-3}}{7}$
0[1 ⁺] 0[2 ⁺]	2707 2572	$\label{eq:convolution} \begin{split} & \text{Convolution} \\ & \text{A}, \Lambda = 1400 \text{ MeV} \\ & \text{A}, \Lambda = 1500 \text{ MeV} \end{split}$	$\frac{4 \times 10^{-3}}{7}$
0[1 ⁺] 0[2 ⁺]	2707 2572	$\label{eq:convolution} \begin{split} & \mbox{Convolution} \\ A, \Lambda = 1400 \mbox{ MeV} \\ A, \Lambda = 1500 \mbox{ MeV} \\ B, \Lambda = 1000 \mbox{ MeV} \end{split}$	$\frac{4 \times 10^{-3}}{7}$ 8 18

$I[J^P]$	\sqrt{s}	g _{D*K*}	$g_{D_{S}^{*}\omega}$	$g_{D_{S}^{*}\phi}$	
0[0 ⁺]	2683	15635	-4035	6074	=
0[1 ⁺]	2707	14902	-5047	4788	Channels:
0[2 ⁺]	2572	18252	-7597	7257	$C = 1; S = 1; I = 0: D^*K^*, D^*_s\phi, D^*_s\omega$

Formalism: The VV interaction

Results

Conclusions

C = 1; S = 1; I = 1

•	$V\sim-7g^2$ for
	<i>I</i> = 0; <i>J</i> = 0, 1

•
$$V \sim -13g^2$$
 for
 $I = 0; J = 2$

• Channels: D^*K^* , $D^*_{s}\rho$ ($\alpha = -1.6$)

$I[J^P]$	$\sqrt{s}_{ m pole}$ (MeV)	Model	Γ (MeV)
1[2 ⁺]	2786	A, $\Lambda=1400~\text{MeV}$	8
		A, $\Lambda=1500~\text{MeV}$	9
		B, $\Lambda=1000~\text{MeV}$	9
		B, $\Lambda=1200~\text{MeV}$	11

$I^G[J^{PC}]$	$\sqrt{s_{\text{pole}}}$	g _{D* К*}	$g_{D_{S}^{*}\rho}$
1[2 ⁺]	2786	11041	11092

C = 2; S = 0; I = 0 and C = 2; S = 1; I = 1/2 (exotics)

Channels: D^*D^* ($\alpha = -1.4$)

• *V* ∼ 0 for *I* = 0; *J* = 0, 2

$I[J^P]$	\sqrt{s}_{pole}	g _{D*D*}
0[1+]	3969	16825

Channels: $D^*D^*_s$ ($\alpha = -1.4$)

• *V* ~ 20 for *I* = 1/2; *J* = 0, 2

$I[J^P]$	\sqrt{s}_{pole}	$g_{D_s^*D^*}$
1/2[1+]	4101	13429

Summary

C, S	$I[J^P]$	\sqrt{s}	$\Gamma_{\rm A}(\Lambda=1400)$	$\Gamma_{\rm B}(\Lambda=1000)$	State	\sqrt{s}_{exp}	Γ _{exp}
1, -1	0[0+]	2848	23	25			
	0[1 ⁺]	2839	3	3			
	0[2+]	2733	11	22			
1,1	0[0 ⁺]	2683	20	44			
	0[1 ⁺]	2707	$4 imes 10^{-3}$	$4 imes 10^{-3}$			
	0[2 ⁺]	2572	7	18	D _{s2} (2573)	$\textbf{2572.6} \pm \textbf{0.9}$	20 ± 5
	1[2 ⁺]	2786	8	9			
2,0,	0[1 ⁺]	3969	0	0			
2, 1	1/2[1 ⁺]	4101	0	0			

Table: Summary of the nine states obtained. The width is given for the model A, Γ_A , and B, Γ_B . All the quantities here are in MeV.

See the talk of A. Valcarce 16/06 (16.30h quarkonia session)

Formalism: The VV interaction

Result

Conclusions

Conclusions

- We studied dynamically generated resonances from vector-vector interaction in the charm-strange and hidden-charm sectors and flavor exotic sectors
- In the present work we can assign one resonance to an experimental counterpart, which is the D₂^{*}(2573) that can be interpreted as a D^{*}K^{*} (mostly) molecule
- We get new flavor exotic states in the C = 1; S = −1 and C = 2; S = 0, 1 that can be thought as D^{*}K̄^{*} and D^{*}D^{*}_(s) molecules and obviously if observed cannot be accomodated into qq̄

Formalism: The VV interaction

Result

Conclusions

References

- M. Bando, T. Kugo, S. Uehara, K. Yamawaki and T. Yanagida, Phys. Rev. Lett. 54 (1985) 1215
- M. Bando, T. Kugo and K. Yamawaki, Phys. Rept. 164 (1988) 217
- M. Harada and K. Yamawaki, Phys. Rept. 381 (2003) 1
- R. Molina, D. Nicmorus and E. Oset, Phys. Rev. D78 (2008) 114018
- L. S. Geng and E. Oset, Phys. Rev. D79 (2009) 074009
- F. S. Navarra, M. Nielsen and M. E. Bracco, Phys. Rev. D 65 (2002) 037502