News from heavy-ion collisions at RHIC and LHC

Ilya Selyuzhenkov

Hadron 2011

XIV International Conference on Hadron Spectroscopy

München, Germany, June 15, 2011

Phase diagram: map of states and phase transitions

EMMI

Evolution of the system created in HIC

 Initial pre-equilibrium state hard parton scattering & jet product

hard parton scattering & jet production gluonic fields (Color Glass Condensate)

- Quark-gluon plasma formation thermalization (hydrodynamics)
- QGP expansion and decay phase transition of partons into hadrons
 - Hadronization
 - Rescattering & chemical freeze out
 - Kinetic freeze out (stop interacting)

Experimentally observe only hadronic state

Many observables need to be studied to establish the properties of QGP

Modern ultra-relativistic HI colliders

	RHIC	LHC
Location	BNL (USA)	CERN (Europe)
Circumference	3.8 km	27 km
Species	p, d, Cu, Au, U polarized protons	p, Pb
Center of mass energy per nucleon pair	in GeV 7-38, 62, 200 500 (pp only)	in TeV 0.9, 2.76, 7 (pp) 2.76 (Pb)

Current heavy ion experiments at RHIC and LHC

STAR (Solenoidal Tracker At RHIC)

PHENIX (Pioneering High Energy Nuclear Ion Experiment)

ALICE (A Large Ion Collider Experiment)

ATLAS (A Toroidal LHC Apparatus)

Main capabilities for heavy-ion studies:

Charge particle tracking and identification: full azimuth, large rapidity coverage wide p_t range: ~ 100 MeV/c to ~ 100 GeV/c Calorimetry and rare probes: neutral particles, photons, jets, heavy flavor

CMS (Compact Muon Solenoid)

Experimental probes of QGP

- Initial energy density, temperature, & chemical potential
 - Charge multiplicity and energy density
 - Particle yields
- Freeze out volume and decoupling time
 - Bose–Einstein correlations
- Viscosity, η /s, and initial conditions
 - Elliptic, triangular, and higher order harmonic flow
 - Multiplicity, momentum, charge fluctuations
- Medium tomography and penetrating probes
 - $_{\rm \prime}\,$ Jet quenching and high p_ suppression of particle production
 - Direct photons
 - Heavy flavor (charm and beauty)
- Critical point search
 - Scanning the different collision energies

Particle yields

Charge multiplicity and energy density: from RHIC to LHC

Identified particle spectra and radial expansion

Bose–Einstein correlations

HBT (Hanbury-Brown-Twiss) correlations

Momentum-space two-particle correlations of identical bosons:

$$C(\vec{p_1}, \vec{p_2}) = \frac{P(\vec{p_1}, \vec{p_2})}{P(\vec{p_1})P(\vec{p_2})} \sim \int |\Phi(\vec{r}, \vec{q})| S(\vec{r}, \vec{q}) d\vec{r} \qquad \vec{q} = \vec{p_1} - \vec{p_2}$$

Correlation "width" in momentum space proportional to the source size
$$\vec{q_{out}} \qquad \vec{q_{\perp}} \qquad \vec{q_{\perp}$$

HBT radii with pions: RHIC vs. LHC

pair transverse momentum sum, k, (GeV/c)

- Homogeneity length is 30% larger at LHC
- Stronger radial & longitudinal collective flow at LHC (strong k₊ dependence)

Freeze-out volume and decoupling time at LHC

Anisotropic transverse flow

Event anisotropy in heavy-ion collision

pressure gradient

Schenke et al., PRL106:042301 (2011)

Initial spacial anisotropy develops into measurable azimuthal asymmetry in momentum space:

- Reflects orientation of the reaction plane (e.g. elliptic shape results in v_{a})
- Sensitive to fluctuations (triangular shape)
- Viscous effects dumps higher order harmonics constrains η/s

Elliptic flow at RHIC and LHC

Elliptic flow fluctuations and higher harmonic at LHC

- v₃ originates from fluctuations in the initial geometry
- Glauber MC reproduces $v_{_3}$ centrality dependence, while CGC MC under predict the magnitude
- For ultra-central collisions CGC describes better v₂ centrality dependence

Observed non-zero $v_{_3}$ helps to constrain initial conditions and η /s (viscosity over entropy density ratio)

Discriminating initial conditions and η /s at RHIC

Number of participants, N_{part}

MC-KLN: Color Glass Condensate initial conditions with $\eta/s = 2/(4\pi)$ Glauber: Glauber initial conditions with $\eta/s = 1/(4\pi)$

RHIC results favor Glauber initial condition with a smaller viscosity?

Understanding two particle correlations with higher harmonic flow

EMMI

Hard probes

Nuclear modification factor, R_{AA}

Quantifying medium effects in heavy-ion collisions by deviation from particle production in pp interactions

$$R_{AA}(p_{T}) = \frac{1}{N_{coll}} \frac{Y_{AA}(p_{T})}{Y_{pp}(p_{T})}$$

Normalized by N_{coll} ratio of p_T yields in AA to that in pp

$$Y(p_{\tau}) = \frac{1}{N_{evt}} \frac{d^2 N_{ch}}{d \eta d p_{\tau}} \quad p_{\tau} \text{ distribution of charge particles at midrapidity}$$

 $R_{AA}(p_T) = 1$ no medium modification $R_{AA}(p_T) < 1$ suppression by medium

$\rm R_{_{AA}}$ of colorless probes at RHIC and LHC

- No nuclear modifications for direct photons and Z bosons: hard scattering processes scale with number of binary collisions
- Provides baseline for study of charged particle production

Charged particle suppression at LHC

- Minimum at $p_{_{\rm f}}$ ~ 6-7 GeV/c with strong raise up to $p_{_{\rm f}}$ ~ 50 GeV/c
- Pronounced centrality dependence below $p_{t} \sim 50 \text{ GeV/c}$
- For most central collisions suppression observed even at $p_{_{f}} \sim 100$ GeV/c: $R_{_{AA}} \sim 0.5$

- Similar shape between LHC and RHIC above $p_{_{t}} \sim 6 \text{ GeV/c}$
- Strong constraint on parton energy loss models

Suppression of heavy flavor production at RHIC and LHC

Heavy flavor production at LHC is suppressed similar to light quarks

Other talks at Hadron 2011 on heavy flavor at LHC:

- Plenary:
- Y. Gao (quarkonia) H. Evans (heavy mesons) N. Leonardo (bottomonium)

Parallel:

- F. Kramer (quarkonia)
- K. Schweda (open charm)

Highly asymmetric di-jets observed at LHC

Sample di-jet event reconstructed by ATLAS in central Pb+Pb collision

- Strong imbalance away side jet quenched by dense medium
- Back-to-back $\Delta \phi \sim \pi$ for all centralities

EMMI

Dijet missing momentum and jet fragmentation

- Momentum difference is balanced by low momentum particles spread at large angles relative to the away side
- Fragmentation function similar for Pb-Pb and pp: in Pb-Pb jet fragments in vacuum

Beam energy scan at RHIC: search for critical point

Number of quark scaling & particle/anti-particle v₂

- v_2 of ϕ meson does not follow the trend for other hadrons at 11.5 GeV
- Significant difference between baryon/anti-baryon v₂ @ 7.7&11.5 GeV No scaling between particles and anti-particles

Higher moments of net-proton distribution

Moments of net proton distribution (χ): 1st - mean, 2nd - variance (σ^2) 3rd - skewness (*S*), 4th - kurtosis (*k*)

- Connected to hydrodynamic susceptibilities
- Sensitive to the correlation length of the system

$$S\sigma = \chi^{(3)} / \chi^{(2)}$$
 $k\sigma^2 = \chi^{(4)} / \chi^{(2)}$

- Consistent with Lattice QCD and Hadron Resonance Gas (HRG) model at higher energies
- Deviates from HRG below 39 GeV

Change in R_{AA} between 22.4 and 39 GeV

- Suppression $p_t > 3$ GeV/c consistent with
 - parton energy loss at 62.4, 200 GeV:
- No suppression at 22.4 GeV Enhancement consistent with Cronin enhancement
- Some hints from Beam Energy Scan program at RHIC on critical points between 7 and 20 GeV - stay tuned!

Physics beyond the study of QGP properties

- Probes of local parity violation in strong interactions
- Observation of anti-matter particles

Probes of local parity violation

Search for event-be-event charge fluctuations. P-even observable but sensitive to P-violation:

 $\langle \cos(\phi_{\alpha} + \phi_{\beta} - 2\Psi_{RP}) \rangle$ Voloshin PRC70, 057901 (2004)

- RHIC and LHC observe charge separation
- Separation disappears between 11.5 and 7.7 GeV energies
- Recent progress in understanding parity even backgrounds, i.e. large flow fluctuations in the first harmonic but still a long way to go before any final conclusion

Anti matter production at RHIC and LHC

EMMI

Summary

Field of heavy-ion collisions provides valuable information on:

- Fundamental properties of strong interactions (deconfinement, chiral symmetry restoration, etc)
- Existence of QCD phase transition & deconfined quark matter (QGP)
- Gives insights on the properties of early universe, just after a few microseconds after Big Bang

Exciting results from first heavy ion run at LHC in November 2010 and new high statistics data from RHIC:

- Provides an additional constrain on the models of heavy-ion collisions
- Key ingredients for building a consistent picture of QGP phase diagram

Looking forward to further studies and more results from LHC and RHIC communities!

