Hadron2011 ** Munich ** June 13-17

Some properties of light scalar mesons in the complex plane

- Based on [*R. García-Martín, B.M., EPJ C70 (2010)*] Here: Applications to I=0 resonances $\sigma(600)$, $f_0(980)$
 - → Couplings to simple operators

Motivations

Interest in I=0 scalars motivated by the Glueball

Motivations

- Interest in I=0 scalars motivated by the Glueball
 - → Lightest particle in QCD with heavy m_q (\gtrsim 1 GeV) is 0⁺⁺ meson: $M_G = 1.730 \pm 0.030 \pm 0.080$ GeV [Morningstar,Peardon PR D60 (1999)]

Motivations

- Interest in I=0 scalars motivated by the Glueball
 - → Lightest particle in QCD with heavy m_q (\gtrsim 1 GeV) is 0⁺⁺ meson: $M_G = 1.730 \pm 0.030 \pm 0.080$ GeV [Morningstar,Peardon PR D60 (1999)]
 - → Real QCD (m_{u,d,s} << 1 GeV) ??? LQCD not (yet) operative Laplace sum rules[Novikov et al. N.P. B165 (1979), Narison, Veneziano I.J.M.P. A4 (1989)] Two glueballs ? one very light ?

: alternative determination of $\langle 0|\alpha_s G^2|S\rangle$

Scalar multiplet:

- \rightarrow Flavour structure: $q\bar{q}$, $[qq][\bar{q}\bar{q}]$?
- → Quantify with couplings. I=1,1/2:
 (0[qq][qq]]S): LQCD [Prelovsek, PR D82 (2010)]
 (0|qq]S): [Maltman, PL B462 (1999)]
- → Couplings to two photons: $\langle 0|j_{\mu}(x)j_{\nu}(0)|S\rangle$,

Here definitions + update using: analyticity in QCD + simple unitarity experimental measurements ($\pi\pi \rightarrow \pi\pi$, $\gamma\gamma \rightarrow \pi\pi$) chiral symmetry.

Roy eq. solution up to $K\overline{K}$ **threshold**

Analyticity + crossing [Roy P.L. B36 (1971)]

$$\operatorname{Re} t_{0}^{0}(s) = a_{0}^{0} + \frac{s - 4m_{\pi}^{2}}{12m_{\pi}^{2}} (2a_{0}^{0} - 5a_{0}^{2}) + \frac{1}{\pi} \int_{4m_{\pi}^{2}}^{\infty} ds' \left[\operatorname{Im} t_{0}^{0}(s') \left(\frac{1}{s' - s} + K_{0}(s', s) \right) + \operatorname{Im} t_{1}^{1}(s') K_{1}(s', s) + \operatorname{Im} t_{0}^{2}(s') K_{2}(s', s) \right] + d_{0}^{0}(s)$$

Unitarity: (elastic effectively up to $4m_{\kappa}^2$)

Reconsidered:

[Anant. et al (ACGL), P. Rep. 353 (2001)] Solutions

in:
$$s < s_A = (0.8 \text{ GeV})^2$$

- Extended range: $s \le (1.1 \text{ GeV})^2$ [*GKPRY*, *PR D83 (2011)*] (within exp. error bars) [*CGL*, work in progress]
- Here: exact (numerically) solutions $s < s_K = 4m_K^2$ (cover both σ , $f_0(980)$ regions)

Theorems on solving one Roy eq. as BV problem[*Pomponiu,Wanders (1976)*] with matching point: $s_m = s_K = 4m_{\nu}^2$:

Inputs:

 \rightarrow above s_m : inelasticities, phase-shifts

→ below
$$s_m$$
: a_0^0 , a_0^2 + phase-shift at one point
(e.g. $\delta_A = \delta_0^0 ((0.8 \text{ GeV})^2))$

→ Output: unique solution in
$$[4m_{\pi}^2, 4m_{\kappa}^2]$$

Assumption: $\delta_0^0(s_K)$ in [180°, 225°]

Simple parametrization (Schenk):

$$\tan \delta_0^0(s) = \sigma_\pi(s) \left[a_0^0 + \sum_{1}^N \alpha_i \left(\frac{s}{s_\pi} - 1 \right)^i \right] \frac{s_\pi - s_0}{s - s_0} \frac{\sigma^K(s_\pi) + \beta}{\sigma^K(s) + \beta}$$

Simple parametrization (Schenk):

$$\tan \delta_0^0(s) = \sigma_\pi(s) \left[a_0^0 + \sum_{1}^N \alpha_i \left(\frac{s}{s_\pi} - 1 \right)^i \right] \frac{s_\pi - s_0}{s - s_0} \frac{\sigma^K(s_\pi) + \beta}{\sigma^K(s) + \beta}$$

Convergence: $\epsilon(s) = \mathcal{R}[t_0^0](s) - \operatorname{Re} t_0^0(s)$

Inputs above matching point:

Inelasticity: [Garcia-Martin et al., Phys. Rev. D83 (2011)]

→ It can be determined two different ways: (a) From sum over inelastic channels: $K\overline{K}$, $\eta\eta$, 4π (b) From elastic channel $\eta_0^0 = |S_0^0|$

Inputs above matching point:

Inelasticity: [Garcia-Martin et al., Phys. Rev. D83 (2011)]

→ It can be determined two different ways: (a) From sum over inelastic channels: $K\overline{K}$, $\eta\eta$, 4π (b) From elastic channel $\eta_0^0 = |S_0^0|$

→ Central determinations:

Inputs below matching point:

New results from K decays and from pionium. Latest from NA48/2[*Batley et al. EPJ C70 (2010)*]

$$a_0^0 = 0.2196 \pm 0.0028_{stat} \pm 0.0020_{syst}$$

 $a_0^2 = -0.0444 \pm 0.0007_{stat} \pm 0.0005_{syst} \pm 0.0008_{ChPT}$

Inputs below matching point:

New results from K decays and from pionium. Latest from NA48/2[*Batley et al. EPJ C70 (2010)*]

$$a_0^0 = 0.2196 \pm 0.0028_{stat} \pm 0.0020_{syst}$$

 $a_0^2 = -0.0444 \pm 0.0007_{stat} \pm 0.0005_{syst} \pm 0.0008_{ChPT}$

- Phase-shifts from $\pi N \rightarrow \pi \pi N$, $\pi \pi \Delta$ we include:
 - 1) CERN-Cracow-Munich [Becker et al. NP B150 (1979), Kaminski et al ZP C74 (1997)]
 - 2) CERN-Munich [*Hyams et al., NP B64 (1973)*]: with weight factor $\frac{1}{4}$

We fit $\delta_A \equiv \delta_0^0(\sqrt{s} = 0.8)$ (also $\delta_K \equiv \delta_0^0(\sqrt{s} = 2m_K)$):

Photon-photon amplitudes

New $\gamma \gamma \rightarrow \pi^0 \pi^0$, $\pi^+ \pi^-$ data from [*Belle, PR D75 (2007), D78 (2008)*]

- \rightarrow High statistics, $f_0(980)$ clearly seen
- → Amplitude analysis, $S \rightarrow 2\gamma$: Analyticity, unitarity: Omnès method [Gourdin,Martin NC 17 (1960)]

f₀(980) region, 2-channel unitarity: Omnès matrix [*Mao et al., (2009), RGM +BM, (2010)*]

→ $\Omega_{ij}(s)$:computed from δ_0^0 , η_0^0 (attributed to $K\overline{K}$)

f₀(980) region, 2-channel unitarity: Omnès matrix [*Mao et al., (2009), RGM +BM, (2010*)]

 $\rightarrow \Omega_{ij}(s)$:computed from δ_0^0 , η_0^0 (attributed to $K\overline{K}$)

$$\begin{pmatrix} h_{0,++}^{0}(s) \\ k_{0,++}^{0}(s) \end{pmatrix} = \begin{pmatrix} \bar{h}_{0,++}^{0,Born}(s) \\ \bar{k}_{0,++}^{0,Born}(s) \end{pmatrix} + \overline{\Omega}(s) \times \begin{bmatrix} \begin{pmatrix} b^{(0)}s + b'^{(0)}s^{2} \\ b_{K}^{(0)}s + b_{K}'^{(0)}s^{2} \end{bmatrix}$$
$$+ \frac{s^{3}}{\pi} \int_{-\infty}^{-s_{0}} \frac{ds'}{(s')^{3}(s'-s)} \overline{\Omega}^{-1}(s') \operatorname{Im} \begin{pmatrix} \bar{h}_{0,++}^{0,Res}(s') \\ \bar{k}_{0,++}^{0,Res}(s') \end{pmatrix}$$
$$- \frac{s^{3}}{\pi} \int_{4m_{\pi}^{2}}^{\infty} \frac{ds'}{(s')^{3}(s'-s)} \operatorname{Im} \overline{\Omega}^{-1}(s') \begin{pmatrix} \bar{h}_{0,++}^{0,Born}(s') \\ \bar{k}_{0,++}^{0,Born}(s') \end{pmatrix} \end{bmatrix}$$

→ Parameters: chiral constraints + fit to data
 → Fit: 6 free parameters, 1783 data points

Complex plane

t₀⁰(z) from Roy representation Domain of validity: [*Caprini, Colangelo, Leutwyler PRL 96 (2006)*]

Complex plane

Resonances = poles on 2nd Riemann sheet $t_0^{0,ll}(z)$: analytical cont. of $t_0^0(z)$ on $[4m_{\pi}^2, 16m_{\pi}^2]$

Elastic unitarity eq. (+real analyticity)

$$t_0^{0,ll}(z) = \frac{t_0^0(z)}{1 - 2\sigma^{\pi}(z)t_0^0(z)}$$

	√ <i>z</i> ₀ (MeV)	$\dot{S}_{0}^{0}(z_{0})$ (GeV ⁻²)
<i>σ</i> (600)	$(442^{+5}_{-8}) - i(274^{+6}_{-5})$	$-\left(0.75_{-0.15}^{+0.10}\right) - i\left(2.20_{-0.10}^{+0.14}\right)$
f ₀ (980)	$(996^{+4}_{-14}) - i(24^{+11}_{-3})$	$-\left(1.1^{+3.0}_{-0.4}\right)-i\left(6.6^{+0.8}_{-1.0}\right)$

→ Central values:
$$\eta_0^0$$
 "dip"

- → Errors: a_0^0 , a_0^2 , δ_A , δ_K , η_0^0 → effect on $f_0(980)$
- → CCL: $m_{\sigma} = 441^{+16}_{-8}$ $\Gamma_{\sigma}/2 = 272^{+9}_{-13}$ PDG: $m_{f_0} = 980 \pm 10$ $\Gamma_{f_0}/2 = [20 - 50]$

Photon-photon amplitude on second sheet:

$$h_{0++}^{0,ll}(z) = \frac{h_{0++}^0(z)}{1 - 2\sigma^{\pi}(z)t_0^0(z)}$$

Residues identified with (complex) couplings [Pennington PRL 97 (2006)]

$$32\pi t_0^{0,ll}(z)\Big|_{pole} = \frac{g_{S\pi\pi}^2}{z-z_0}, \quad h_{0,++}^{0,ll}(z)\Big|_{pole} = \frac{g_{S\pi\pi}g_{S\gamma\gamma}}{z-z_0}.$$

Definition of width:

$$\Gamma_{S\to 2\gamma} \equiv \frac{|g_{S\gamma\gamma}|^2}{16\pi m_S} \, .$$

Results for 2γ couplings

$$\begin{split} \Gamma_{\sigma(600)\to 2\gamma} &= \left(2.08\pm 0.20^{+0.07}_{-0.04}\right) \quad (\text{KeV}) \\ \Gamma_{f_0(980)\to 2\gamma} &= \left(0.29\pm 0.21^{+0.02}_{-0.07}\right) \quad (\text{KeV}) \; . \end{split}$$

First error: polynomial parameters ($\gamma\gamma$ data) Second error: $\pi\pi$ amplitude

Results for 2γ couplings

$$\begin{split} \Gamma_{\sigma(600)\to 2\gamma} &= \left(2.08\pm 0.20^{+0.07}_{-0.04}\right) \quad (\text{KeV}) \\ \Gamma_{f_0(980)\to 2\gamma} &= \left(0.29\pm 0.21^{+0.02}_{-0.07}\right) \quad (\text{KeV}) \;. \end{split}$$

First error: polynomial parameters ($\gamma\gamma$ data)Second error: $\pi\pi$ amplitudeComparisonPresent work

with others for σ width:

16/22

Couplings of scalar mesons to operators

$\bar{q}q$ couplings

Gluon couplings

→ Definitions from complex poles

$$\Pi_{jj}(p^2) = i \int d^4x e^{ipx} \langle 0|Tj_S(x)j_S(0)|0$$

 $(j_S \text{ one of the scalar operators})$

Discontinuity from Källen-Lehman representation

$$\Pi_{jj}^{\prime\prime}(z) = \Pi_{jj}(z) + \frac{3}{16\pi} \frac{\sigma^{\pi}(z) \left(F_{j}(z)\right)^{2}}{1 - 2\sigma^{\pi}(z)t_{0}^{0}(z)} \,.$$

 $F_j(t)\delta^{ab} = \langle \pi^a | j_S | \pi^b \rangle$ is the $\pi\pi$ form-factor Main result: C_S^j proportional $F_j(z_0)$ $F_j(t)$ obey Omnès representation [like $\gamma\gamma$ but no LH cut]

→ subtraction constants: chiral symmetry to $O(p^2)$ [Donoghue, Gasser, Leutwyler NP B343 (1990)]

 $\rightarrow O(p^4)$ corrections in errors

 $F_j(t)$ obey Omnès representation [like $\gamma\gamma$ but no LH cut]

→ subtraction constants:chiral symmetry to $O(p^2)$ [Donoghue, Gasser, Leutwyler NP B343 (1990)]

 $\rightarrow O(p^4)$ corrections in errors

 $\alpha_s G^2$ from θ_{μ}^{μ} :

$$\theta^{\mu}_{\mu} = \frac{\beta(g)}{2g} G^{a}_{\mu\nu} G^{a\mu\nu} + (1 + \gamma_m(g)) \sum_{q=u,d,s} m_q \bar{q} q$$

We will use lowest order $\beta(g)$ and $\gamma_m(g)$

Results for couplings to $\bar{q}q$ operators

	σ(600)	f ₀ (980)
$ C_S^{uu} $ (MeV)	$206 \pm 4^{+4}_{-6}$	$41 \pm 15^{+7}_{-4}$
<i>C_Ss</i> (MeV)	$17 \pm 5^{+1}_{-7}$	$139 \pm 42^{+13}_{-6}$

First error: $O(p^4)$, Second error $\pi\pi$

 $I = \frac{1}{2}, I = 1 \text{ scalars (MeV)}$ $C_{\kappa(800)}^{us} \simeq 156 \quad (\text{from RS equation})$ $C_{a_0}^{ud} = 197 \pm 37 \quad [Maltman, PL B462 (1999)]$

Higher mass scalar:

 $C_{K_0^*(1430)}^{us} = 370 \pm 20$: Larger coupling !

Results for couplings to gluonic operators

	σ(600)	<i>f</i> ₀ (980)
$ C_S^{ heta} $ (MeV)	$197 \pm 15^{+21}_{-6}$	$114 \pm 44^{+22}_{-7}$
$ C_{S}^{G} $	$472 \pm 15^{+26}_{-16}$	$227 \pm 41^{+51}_{-16}$

- Note: significant size of $C^{\theta}_{f_0(980)}$
- For comparison $C^{\theta}_{\sigma} = [272 329]$ MeV (Laplace sum rule)[*Narison, Veneziano IJMP A4* (1989)]

Conclusions

 $q\bar{q}$: not negligible, results in agreement with σ , κ , a_0 , f_0 forming a nonet.

 $\alpha_s G^2$: both σ , $f_0(980)$ couple, qualitative agreement with Laplace QCD sum-rule. No naive glueball !

 $[qq][\bar{q}\bar{q}]$?chiral transformation $(3_L \times \bar{3}_L, 1_R) + (3_L, \bar{3}_R) + (L \leftrightarrow R)$ need input: $\dot{F}_j(0)$ $F_j(0)$ $F_j(0)$

2γ: improved $f_0(980)$ from Belle, new measurements E < 0.8 GeV (KLOE2, BESIII ?) very useful! (for σ , pion polarizabilities)