Experimental studies of mesic nuclei at J-PARC

Hiroyuki FUJIOKA (Kyoto Univ.)

Antikaon + Nucleon

Λ(1405) S₀₁

 $I(J^P) = O(\frac{1}{2})$ Status: ****

It seems to be the universal opinion of the chiral-unitary community that there are two poles in the 1400-MeV region. For discussions and earlier references, see for example MAGAS 05 and JIDO 03. ZYCHOR 08 presents experimental evidence against the two-pole model, but this is disputed by GENG 07A. See also REVAI 09, which finds little basis for choosing between one- and two-pole models.

See also the "Note on the $\Lambda(1405)$ " in our 2000 edition, The European Physical Journal **C15** 1 (2000).

A single, ordinary three-quark $\Lambda(1405)$ fits nicely interpretent $1/2^{-1}$ SU(4) $\overline{4}$ multiplet, whose other members are the $\lambda = \overline{c}_{c}(2790)^{+}$, and $\overline{c}_{c}(2790)^{0}$; see Fig. 1 of our note on Baryons."

Antikaon + Nucleon

Λ(1405) S₀₁

 $I(J^P) = O(\frac{1}{2})$ Status: ****

It seems to be the universal opinion of the chiral-unitary community that there are two poles in the 1400-MeV region. For discussions and earlier references, see for example MAGAS 05 and JIDO 03. ZYCHOR 08 presents experimental evidence against the two-pole model, but this is disputed by GENG 07A. See also REVAI 09, which finds little basis for choosing between one- and two-pole models.

See also the "Note on the $\Lambda(1405)$ " in our 2000 edition, The European Physical Journal **C15** 1 (2000).

A single, ordinary three-quark $\Lambda(1405)$ fits nicely interpretent $1/2^{-1}$ SU(4) $\overline{4}$ multiplet, whose other members are the $\Xi_{c}(2790)^{+}$, and $\Xi_{c}(2790)^{0}$; see Fig. 1 of our note on Baryons."

one-pole state? two-pole state? KN bound state at 1405MeV? 1420N

D. Jido et al., NPA 725, 181 (2003)

Antikaon + Two Nucleons (KNN bound state) K theory

Table 4: Summary of theoretical studies on the $\bar{K}NN$ - $\pi\Sigma N$ system. We denote the mass of the states as the "binding energy" $B_{\bar{K}NN}$ measured from the $\bar{K}NN$ threshold. Γ_m represents the width of the mesonic decay into $\pi\Sigma N$ and $\pi\Lambda N$ channels. Ref. [210] found additional pole which is broad.

Refs.	204, 205	[202]	[206]	[208, 209]	[210]
interaction	Energy independent			Energy dependent	
	pheno.	pheno.	chiral	chiral	chiral
method	Faddeev	variational	Faddeev	variational	Faddeev
$\pi\Sigma N$ dynamics	explicit	effective	explicit	effective	explicit
$B_{\bar{K}NN}$ [MeV]	50-70	48	60-95	17-23	9-16
$\Gamma_m \; [\text{MeV}]$	90-110	60	45 - 80	40-70	34-46

The bound state will exist. (B<100MeV, Γ: moderately large)

T. Hyodo and D. Jido, arXiv: 1104.4474 [nucl-th]

Antikaon + Two Nucleons (KNN bound state)

experiment FINUDA (2005) and DISTO (2010)

stopped K⁻ + A (Li, C) \rightarrow p + A + X (invariant mass spectroscopy)

Phys. Rev. Lett. 94, 212303 (2005) 5

D

Antikaon + Two Nucleons (KNN bound state)

experiment FINUDA (2005) and DISTO (2010)

stopped K⁻ + A (Li, C) \rightarrow p + A + X (invariant mass spectroscopy)

Antikaon + Two Nucleons (KNN bound state)

experiment | FINUDA (2005) and DISTO (2010)

 $p + p \rightarrow p + \Lambda + K^+ @ 2.85GeV$ (missing mass spectroscopy & invariant mass spectroscopy)

> $M_X=2267\pm3\pm5 MeV$ $\Gamma_X=118\pm8\pm10 MeV$

Phys. Rev. Lett. 104, 132502 (2010)

Present Status

FINUDA

- Magas et al. [Phys. Rev. C 74, 025206 (2006)] final state interaction after 2-nucleon absorption?
- analysis with higher statistics data (2006-2007)
- DISTO
 - reanalysis @ 2.50GeV [arXiv: 1102.0482]
 - new experiment at GSI-FOPI

New experiments at J-PARC

toward confirmation of the (non-) existence of kaon-bound states

- EI5: ³He(K⁻, n)K⁻pp, ³He(K⁻, p)K⁻pn
- E27 : d(π⁺, K⁺)K⁻pp
- Lol : stopped \overline{p} +³He \rightarrow K⁺+K⁰+K⁻K⁻pp
- Lol : ³He(stopped K⁻, n)K⁻pp

http://j-parc.jp/NuclPart/Proposal_e.html

J-PARC Japan Proton Accelerator Research Complex

GeV333µA

~500m

100Me

al

er experiments

Hadron

MLSF

CRCS

50GeV-PS $15\mu A, 750kW$ Bird's eye photo in July 2009

V to

P. S. S. S.

SK

Giant Earthquake on 3.11

APR | MAY | JUN | JUL | AUG | SEP | OCT | NOV | DEC | JAN | FEB | MAR Tsukuba Campus O LINAC VAC/RF Beam Injection (3 GeV) to PF Ring Test O PF Rings VAC/Mag Experiments Test Alignment Test Operation O KEKB Under construction Tokai Campus O Infrastructure Repair O LINAC Beam tuning & Inspection Power Repair delivery test Power O RCS/MR Inspection Beam tuning & Repair test delivery O MLF/ Inspection Repair System test & Hadron/ Power Experiment test Neutrino 10

Recovery Plan

2012

2011

http://kek.jp

E27 (π⁺, K⁺)

π, K, ... from production target

EI5 (K⁻, n)

(Feb. 2011)

J-PARC EI5 experiment

14

J-PARC EI5 experiment

14

CDS commissioning

π beam on C, Cu target inside CDS (Oct. 2010)

a few mb/sr instead of 10 ub/sr?

[T. Koike, T. Harada, Phys. Rev. C80, 055208 (2009)]

$\frac{assumption}{d\sigma/d\Omega(0^{\circ})} \times BR(\Lambda p) = I mb/sr$

We can start the first physics run even if the beam intensity is ~1/10 of the designed one.

16

(simulation by T. Hiraiwa)

cf. d(K⁻, π ⁻) reaction

J-PARC E27 experiment

Two-proton tagging

- two fast protons from K⁻pp decay
- cf. very slow proton as a spectator from quasi-free processes

range counter and test experiment

 π^{\pm} , p from π^{-+} p reaction parasite of EI9 experiment (Θ^{+} search experiment)

range counter and test experiment

20

SKS

 π^{\pm} , p from π^{-+} p reaction parasite of EI9 experiment (Θ^{+} search experiment)

range counter and test experiment

SKS

π^{\pm} , p from π^{-} +p reaction parasite of EI9 experiment

(Θ^+ search experiment)

600

400

800

1000

1200

PID

η-mesic nuclei

- Predicted by Haider and Liu [Phys. Lett. B172, 257 (1986)]
- first experiment @ BNL : (π⁺, p) reaction
 [R. E. Chrien et al., Phys. Rev. Lett. 60, 2595 (1988)]
 "narrow bound states were not observed."

• J-PARC Lol (2007)

(K. Itahashi, H. Fujioka, S. Hirenzaki, D. Jido, and H. Nagahiro) "Spectroscopy of η mesic nuclei by (π ⁻, n) reaction at recoilless kinematics"

η-mesic nuclei

21

- Predicted by Haider and L [Phys. Lett. B172, 257 (198
- first experiment @ BNL : [R. E. Chrien et al., Phys. R "narrow bound states were
- J-PARC Lol (2007)

(K. Itahashi, H. Fujioka, S. Hirenzaki, D. J "Spectroscopy of η mesic by (π ⁻, n) reaction at recc

η-mesic nuclei

- Predicted by Haider and Liu [Phys. Lett. B172, 257 (1986)]
- first experiment @ BNL : (π⁺, p) reaction
 [R. E. Chrien et al., Phys. Rev. Lett. 60, 2595 (1988)]
 "narrow bound states were not observed."

• J-PARC Lol (2007)

(K. Itahashi, H. Fujioka, S. Hirenzaki, D. Jido, and H. Nagahiro) "Spectroscopy of η mesic nuclei by (π ⁻, n) reaction at recoilless kinematics"

TAPS @ MAMI

 $\gamma + ^{3}He \rightarrow \pi^{0} + p + X$

M. Pfeiffer et al., PRL 92, 252001 (2004)

> A. Budzanowski et al., PRC 79, 012201(R) (2009)

η-mesic nuclei and N*(1535) in medium

- strong coupling
 between <u>η mode</u> and N*(1535)-hole mode
- The N* mass may be reduced at finite density, which alter the ŋ-nucleus interaction.

What causes the level crossing ? : partial restoration of chiral symmetry

HNP09 @ Arata Hall, Osaka University, 19 Nov. 2009

24

Experimental idea

momentum : 0.8-1.0 GeV/c (magic momentum)

similar setup as the EI5 experiment

(p, ³He) reaction

--- discussion with Prof. Machner and Prof. Roy ---

- ⁶Li (= α -d) target \rightarrow ⁴He- η system
- detection of decay particles $(N^* \rightarrow \pi^- p)$
- may be possible at J-PARC, but much intense beam (>10⁷Hz) is needed.

low-energy n-N interaction

TABLE I. η -nucleon s-wave scattering lengths $a_{\eta N}$.

$a_{\eta N}$ (fm)	Formalism or reaction	Reference	
0.270+0.220 <i>i</i>	Isobar model	Bhalerao and Liu [2]	
0.280 + 0.190i	Isobar model	Bhalerao and Liu [2]	
0.281 + 0.360i	Photoproduction of η	Krusche [23]	
0.430 + 0.394i		Krusche [23]	
0.579+0.399 <i>i</i>		Krusche [23]	
0.476 + 0.279i	Electroproduction of η	Tiator et al. [22]	
0.500 + 0.330i	$pd \rightarrow {}^{3}\text{He} e \eta$	Wilkin [24]	
0.510 + 0.210i	Isobar model	Sauermann et al. [14]	
0.550 + 0.300i		Sauermann et al. [14]	
0.620 + 0.300i	Coupled T matrices	Abaev and Nefkens [16]	
0.680 + 0.240i	Effective Lagrangian	Kaiser et al. [17]	
0.750 + 0.270i	Coupled K matrices	Green and Wycech [12]	
0.870 + 0.270i	Coupled K matrices	Green and Wycech [13]	
1.050 + 0.270i		Green and Wycech [13]	
0.404 + 0.343i	Coupled T matrices	Batinić et al. [18]	
0.876+0.274 <i>i</i>		Batinić and Švarc [19]	
0.886 + 0.274i		Batinić and Švarc [19]	
0.968+0.281 <i>i</i>		Batinić et al. [20]	
0.980 + 0.370i	Coupled T matrices	Arima et al. [21]	

Haider and Liu, PRC 66, 045208 (2002)

d(π⁺, p)N*(1535) reaction

rescattering of n meson inside deuteron

 π^+

η angular distribution
 two-proton detection
 from π⁺+d reaction

H. Garcilazo and M.T. Peña, Phys. Lett. B696, (2011)

Summary (kaonic nuclei)

 \bullet Missing-mass spectroscopy with π/K beam

- search for kaonic nuclei (two approved proposals + Lol)
 - EI5: preparation in progress
 - E27: was almost ready to start

Summary (n-mesic nuclei)

• Missing-mass spectroscopy with π/K beam

search for η-mesic nuclei

- Lol: ⁷Li(π⁻, n)
- ⁶Li(p, ³He)

• extraction on the strength of ηN interaction

• $\pi^++d \rightarrow p+p+\eta$ (p η rescattering)

J-PARC E15 collaboration list

S. Ajimura^a, G. Beer^b, H. Bhang^c, M. Bragadireanu^d, P. Buehler^e, L. Busso^{f,g},
M. Cargnelli^e, S. Choi^c, C. Curceanu^h, S. Enomotoⁱ, D. Faso^{f,g}, H. Fujioka^j, Y. Fujiwara^k,
T. Fukuda^l, C. Guaraldo^h, T. Hashimoto^k, R. S. Hayano^k, T. Hiraiwa^j, M. Iioⁿ, M. Iliescu^h,
K. Inoueⁱ, Y. Ishiguro^j, T. Ishikawa^k, S. Ishimotoⁿ, T. Ishiwatari^e, K. Itahashi^m, M. Iwaiⁿ,
M. Iwasaki^{o,m}, S. Kawasakiⁱ, P. Kienle^p, H. Kou^o, J. Marton^e, Y. Matsuda^q, Y. Mizoi^l,
O. Morra^f, T. Nagae^j, H. Noumi^a, H. Ohnishi^m, S. Okada^h, H. Outa^m, K. Piscicchia^h,
M. Poli Lener^h, A. Romero Vidal^h, Y. Sada^j, A. Sakaguchiⁱ, F. Sakuma^m, M. Sato^k,
A. Scordo^h, M. Sekimotoⁿ, H. Shi^k, D. Sirghi^{h,d}, F. Sirghi^{h,d}, K. Suzuki^e, S. Suzukiⁿ,
T. Suzuki^k, H. Tatsuno^k, M. Tokuda^o, D. Tomono^m, A. Toyodaⁿ, K. Tsukada^s,
O. Vazquez Doce^h, E. Widmann^e, T. Yamazaki^{k,m}, H. Yim^r, and J. Zmeskal^e

J-PARC E27 collaboration list

T. Nagae, K. Imai, H. Fujioka, A. Okamura, M. Moritsu, H. Asano, S. Adachi, Y. Sada, H. Sugimura Kyoto University, Kitashirakawa, Sakyo-ku, Kyoto 606-8502, Japan

T. Takahashi, M. Naruki, S. Ishimoto, A. Toyoda IPNS, KEK, 1-1 Oho, Tsukuba, Ibaraki 305-0801, Japan

K. Hosomi, T. Koike, K. Miwa, K. Shirotori, H. Tamura Tohoku University, 6-3 Aoba, Aramaki, Aoba-ku, Sendai 980-8578, Japan.

³³