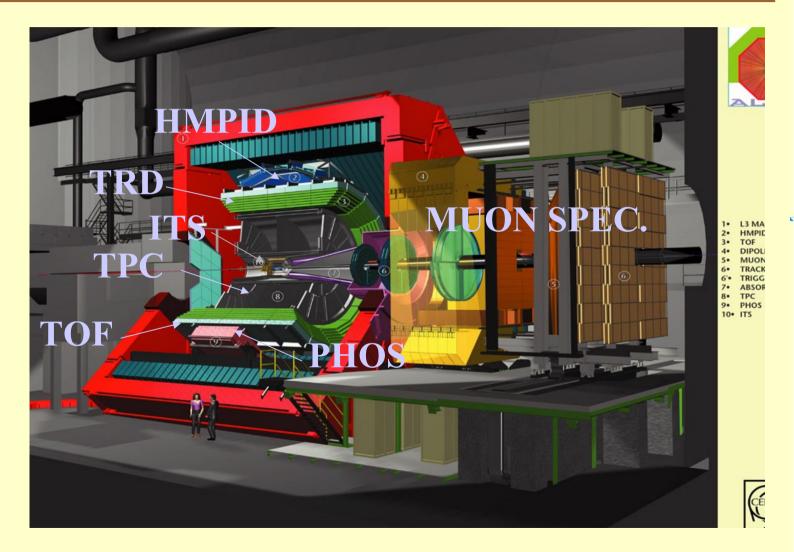
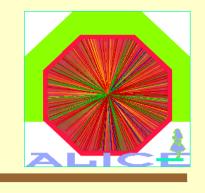
Central Meson Production in ALICE

- ALICE detector
- Selection of central diffractive single/double gap events
- Central Meson production in pp-collisions at $\sqrt{s} = 7 \text{ TeV}$
- Analysis of $f_0(980)$ and $f_2(1270)$ production
- Central Meson production in Pb-Pb collisions at $\sqrt{s_{NN}}$ =2.74 TeV
- Analysis of $\rho(770)$
- Conclusions, outlook

The ALICE experiment




Acceptance central barrel

$$-0.9 < \eta < 0.9$$

Acceptance muon spectr.

$$-2.5 < \eta < -4.$$

ALICE pseudorapidity acceptance

→ additional forward detectors (no particle identification)

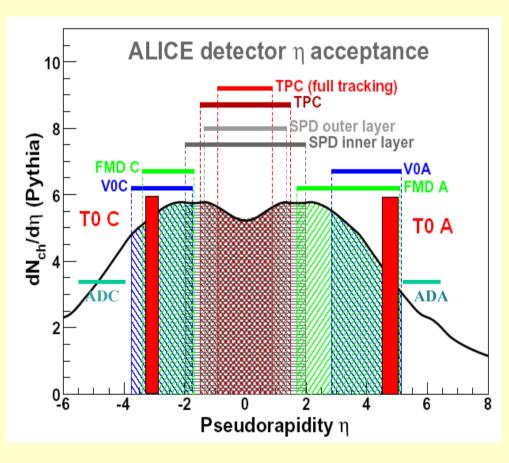
$$1 < \eta < 5$$
 and $-4 < \eta < -1$

 \rightarrow definition of gaps η_+ , η_-

p-p luminosity $L = 5x10^{30} cm^{-2} s^{-1}$:

 \rightarrow reduced prob. overlapping events

diffractive L0 trigger (hardware):


Pixel or TOF mult (central barrel)

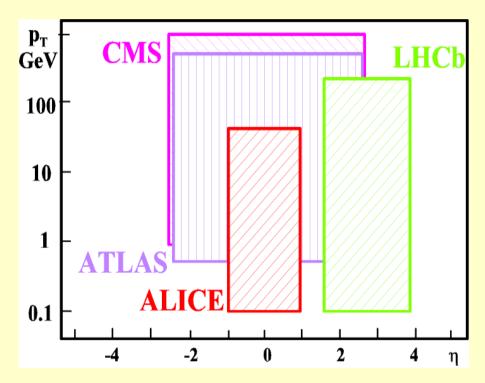
 $\overline{V0A}$: gap η_{\perp} : $3 < \eta < 5 \rightarrow \Delta \eta \sim 0.5$

 $\overline{V0C}$: gap η : $-2 < \eta < -4 \rightarrow \Delta \eta \sim 0.5$

high level trigger (software):

gap
$$\eta_+$$
: 0.9 < η < 5.1 \ V0-FMD-gap η :-3.7 < η < -0.9 \ SPD-TPC

→ improved including ADA, ADD


ALICE central barrel comparison to other LHC detectors

low magnetic field

	Magn. field (T)	P _T cutoff GeV/c	Material x/x0 (%)
ALICE	0.2-0.5	0.1-0.25	7
ATLAS	2.0	0.5 (0.08)	20
CMS	4.0	0.75 (0.2)	30
LHCb	4Tm	0.1	3.2

η-pt acceptance

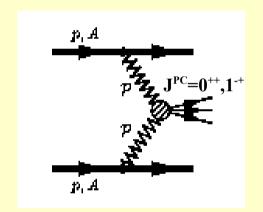
 $\rightarrow low p_T trigger ?$

ALICE acceptance

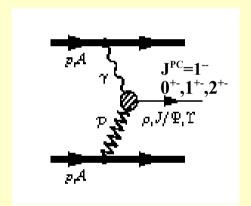
• ALICE acceptance matched to diffractive central production:

central

C-side barrel A-side $\Delta \eta \sim 3$ $\Delta \eta \sim 2$ $\Delta \eta \sim 4$



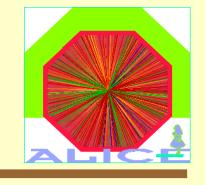
Activity table


yes	yes	no
no	yes	no
no	yes	yes
yes	yes	yes

gap A
double gap
gap C
no gap

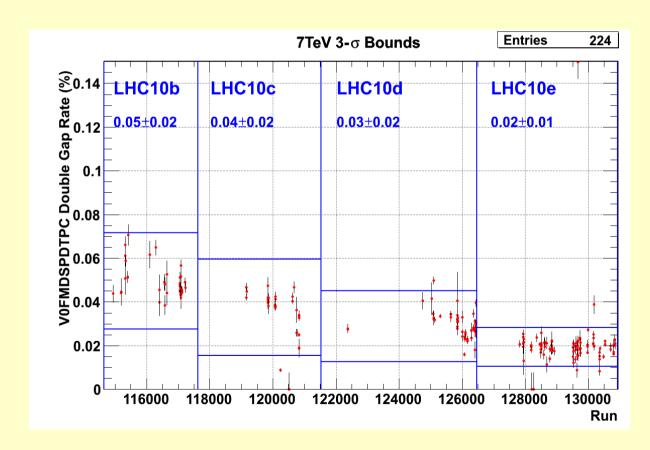
double pomeron

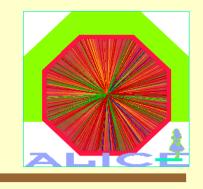
γ –pomeron


Data taking:

pp @ L =
$$5 \times 10^{30}$$
 cm⁻²s $(\rightarrow \frac{d\sigma}{dy}|_{y=0}^{\sim} nb)$
pPb @ L = 10^{29} cm⁻²s⁻¹
PbPb @ L = 10^{27} cm⁻²s⁻¹

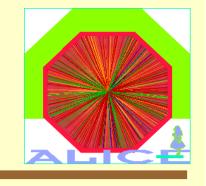
Central Meson production in pp-collisions at $\sqrt{s} = 7$ TeV



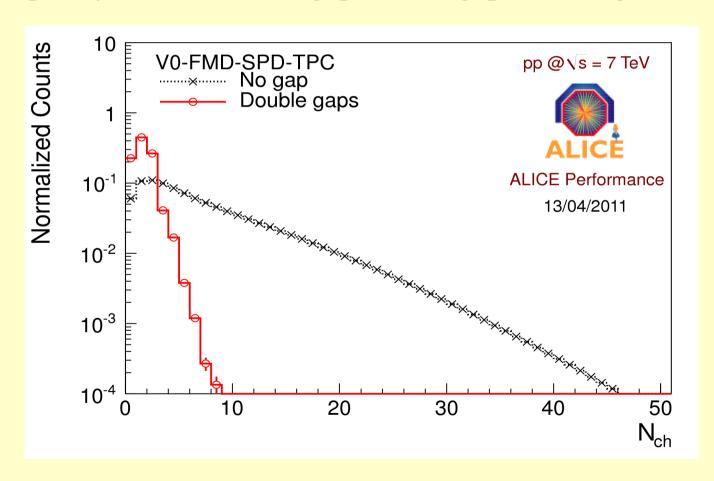

- Data taken in 2010-2011 with minimum bias trigger
- Offline analysis event type: no gap/gap A/gap C/double gap
- Compare single/double gap events to no gap events
- Analysis of multiplicity-distribution
- Analysis of $f_0(980)$ and $f_2(1270)$ production

First analysis min bias data

3 σ cut on single gap, double gap fraction on a run basis

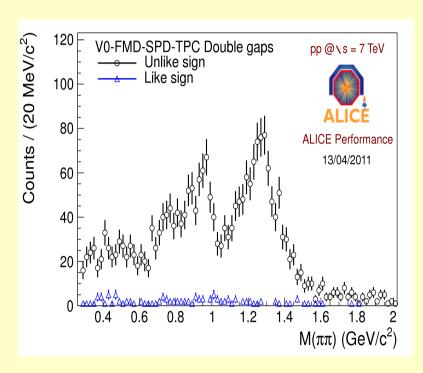


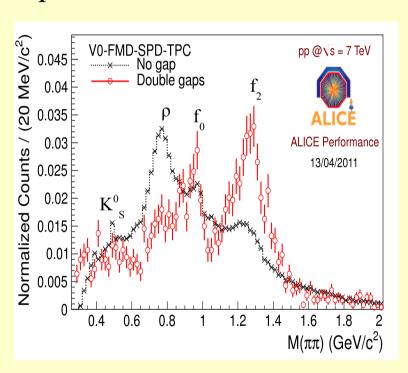
Data sample pp collisions at 7 TeV


•	Physics selection	3.5×10^{8}
---	-------------------	---------------------


- no gap
$$3.1x10^7$$

Multiplicity distribution


Multiplicity distribution of gap and no gap events (good tracks)



• Invariant mass distribution of pion pairs

distribution for double gap events unlike and like-sign pairs

like-sign corrected distribution for double and no-gap events

 \rightarrow enhanced f_0 , f_2 production in double gap events

Diffractive data taking in PbPb-collisions at $\sqrt{s_{_{NN}}} = 2.74 \text{ TeV}$

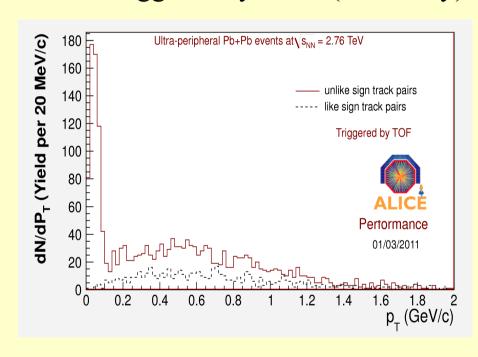
- Heavy-ion collisions Pb-Pb at the LHC nov-dec 2010
- ALICE collected data on 12 M minimum bias collisions
- dedicated diffractive triggers running:
 - OM2 TOF only trigger: (number of hits in TOF \geq 2)
 - CCUP2 TOF+SPD+V0 trigger: (TOF hits \geq 2) AND (SPD hits \geq 2) AND (V0A,V0C)
 - CMUP1 Muon arm + V0 trigger: (at least one muon candidate) AND (V0A)
- OM2 running in early low luminosity runs, CMUP1 and CCUP2 in later parts, CCUP2 downscaled by factor 5-30

Electromagnetic/diffractive interactions in heavy ion collisions at high energies

- Electromagnetic interactions in heavy ion reactions:
 - Photoabsorption with breakup of nucleus or excitation of dipole giant resonance followed by neutron emission → beam particle is lost
 - Photon-photon: Electromagnetic production of pseudoscalars π^0 , η , η' and pairs of bosons ($\pi^+\pi^-$, K⁺K⁻) and fermions (e^+e^- , $\mu^+\mu^-$, $\tau^+\tau^-$)
 - Photon-hadron: diffractive photoproduction of vector mesons

Baur et al, Coherent gamma-gamma and gamma-A interactions in very peripheral collisions at relativistic ion colliders, Phys. Rep. **364**, 359 (2002)

	$AA \rightarrow X$	$AA \rightarrow AAX$	$AA \rightarrow AAX$	$AA \rightarrow AAX$	
	nuclear	PP→hadrons	γγ→hadrons	γP→hadrons	
σ(pp)@LHC	70 mb	0.52 mb	15 nb	2.8 µb	$M_{hadr} > 1 \text{ GeV}$
σ(PbPb)@LHC	7.8 b	0.84 mb	150 mb	11 mb	naai

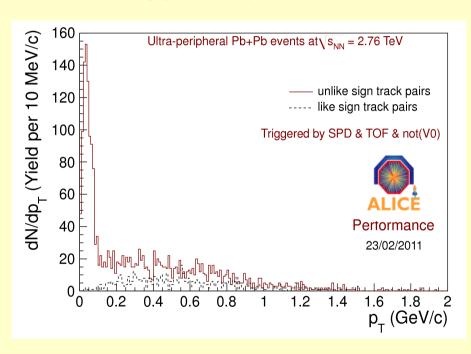

PbPb: $\gamma P \rightarrow$ hadrons: Excl. photoprod. $\rho \rightarrow \pi^+ \pi^-$, $\sigma = 3.9$ b (starlight MC), 7.1 b (Frankfurt et al)

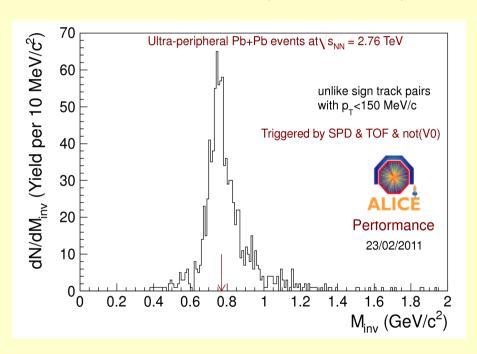

 \rightarrow coherent production implies low transverse momentum $p_{_T} < \sim 100~{\rm MeV/c}$

Central Meson production in PbPb-collisions at $\sqrt{s_{NN}} = 2.74 \text{ TeV}$

• Events triggered by OM2 (TOF only) which contain two reconstructed tracks

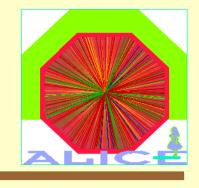
Pair p_T for unlike and like-sign pairs


→ Coherent peak seen in unlike-sign pairs, not seen in like-sign pairs


Uncorrected M_{inv} distribution of unlike-sign pairs with $p_T < 150 \text{ MeV/c}$ $\rightarrow Coherent \ \rho\text{-production}$

Central Meson production in PbPb-collisions at $\sqrt{s_{NN}} = 2.74 \text{ TeV}$

• Events triggered by CCUP2: (activity in central barrel) AND $(\overline{V0A}, \overline{V0C})$



Pair p_T for unlike and like-sign pairs

→ Coherent peak seen in unlike-sign pairs, not seen in like-sign pairs

Uncorrected M_{inv} distribution of unlike-sign pairs with $p_T < 150 \text{ MeV/c}$ $\rightarrow Coherent \ \rho\text{-production}$

Conclusions, outlook

- Double gap selects different diffractive channels in pp and PbPb collisions
- Pomeron-Pomeron in pp-collisions:
 - Double gap events show different multiplicity distribution
 - Two track invariant mass distribution of double gap events can be understood as continuum plus f_0 , f_2 resonance contribution
 - f_0 , f_2 enhancement in double gap events as compared to no-gap events
- Photon-Pomeron in PbPb-collisions:
 - Coherent ρ-photoproduction established as dominant reaction channel in double gap events of PbPb-collisions
 - p-photoproduction cross section to be determined
 - Search $J/\psi \rightarrow e^+e^-$, $\gamma\gamma \rightarrow e^+e^-$ in central barrel, $J/\psi \rightarrow \mu^+\mu^-$, $\gamma\gamma \rightarrow \mu^+\mu^-$ in muon arm
- Add Zero Degree Calorimeter info to study breakup/no breakup of beam particles