Analysis of diffractive dissociation of exclusive

$K^{-} \pi^{+} \pi^{-}$events
In the high energetic hadron beam
of the
COMPASS-experiment

The $\mathrm{q} \bar{q}$ model in a potential

Isospin $=1 / 2$ light meson spectrum

$$
|\overline{u s}\rangle|\mathrm{d} \overline{\mathrm{~s}}\rangle|\overline{\mathrm{u}} \mathrm{~s}\rangle|\overline{\mathrm{d} s}\rangle
$$

$$
\downarrow \bigoplus_{\mathrm{s}=0} \quad \uparrow \uparrow \mathrm{~s}=1
$$

L
0
1
2
$0 \quad 1$
$\xrightarrow{K(1460)} \quad K_{1}(\mathrm{~B})$
$\underline{\mathrm{K}_{0}^{*}(1430) \mathrm{K}_{2}{ }^{*}(1430) \mathrm{K}_{1}(\mathrm{~A})}$
K* (892)

Kaon (494)

Isospin $=1 / 2$ light meson spectrum

How do we produce those resonances?

Diffractive dissociation into $\mathrm{K}^{-} \pi^{+} \pi^{-}$

The measurement at COMPASS

The COMPASS Spectrometer 2008/2009

The COMPASS Spectrometer 2008/2009

Beam properties

Beam momentum $190 \mathrm{GeV} / \mathrm{c}$
Beam composition:
$\pi^{-}: \mathrm{K}^{-}: \overline{\mathbf{p}}=0.97: 0.024: 0.008$ Up to 5×10^{6} particles/s

The COMPASS Spectrometer 2008/2009

CEDAR particle identification

CEDAR particle identification

Difference of the cherenkov ring radii of a pion and a kaon is below 0.1 mm at $190 \mathrm{GeV} / \mathrm{c}$ beam momentum !

The COMPASS Spectrometer 2008/2009

The COMPASS Spectrometer 2008/2009

Recoil proton detector

around
40 cm long 1 H 2 target

The COMPASS Spectrometer 2008/2009

The COMPASS Spectrometer 2008/2009

Invariant mass distribution ($\mathrm{K}^{-} \pi^{+} \pi^{-}$)

Are those resonances decaying directly into 3 particles? ...

Nuclear Physics B187 (1981) 1-41
© North-Holland Publishing Company

Invariant mass distributions ($\mathrm{K}^{-} \pi^{+}$) and $\left(\pi^{+} \pi^{-}\right)$

RPD: determination of t' slopes

RPD: determination of t ' slopes

RPD: determination of t ' slopes

RPD: determination of t ' slopes

Determination of acceptance via MC

Acceptance in the $\mathrm{K}^{-} \pi^{+} \pi^{-}$invariant mass

Acceptance in the Gottfried Jackson frame

Acceptance in the Gottfried Jackson frame

Acceptance corrected partial wave analysis

Acceptance corrected partial wave analysis

Components of the LogLikelihood function:

Incoherent sum over reflectivities

Production amplitudes \rightarrow Spin density matrix:

$$
\rho_{i j}^{\epsilon}=\sum_{r} T_{i r}^{\epsilon} T_{j r}^{\epsilon *}
$$

Phase space integrals (with acceptance):

$$
\bar{\psi}_{i}^{\epsilon}(\tau)=\frac{\psi_{i}^{\epsilon}(\tau)}{\sqrt{\int\left|\psi_{i}^{\epsilon}\left(\tau^{\prime}\right)\right|^{2} \mathrm{~d} \tau^{\prime}}}
$$

$$
\begin{gathered}
I A_{i j}^{\epsilon}=\int \bar{\psi}_{i}^{\epsilon}\left(\tau_{n}\right) \bar{\psi}_{j}^{\epsilon}\left(\tau_{n}\right)^{*} \operatorname{Acc}(\tau) \mathrm{d} \tau \\
\operatorname{Acc}(\tau)=\left\{\begin{array}{l}
0 \\
1
\end{array}\right.
\end{gathered}
$$

The partial wave set

$j^{p \mathrm{c}}$	me	isol	[$\left.\begin{array}{l}1 \\ s\end{array}\right]$	iso2
0^{-+}	0+	K^{*} (892)	[1]	π^{-}
0^{-+}	0+	$\rho(770)$	[1]	K^{-}
0^{-+}	0+	$\mathrm{f}_{0}(600)$	[${ }_{0}$]	K^{-}
1^{++}	0+	$\mathrm{K}^{*}(892)$	$\left[\begin{array}{l}0 \\ 1\end{array}\right]$	π^{-}
1^{++}	0+	$\mathrm{K}^{*}(892)$	$\left[\begin{array}{l}2 \\ 1\end{array}\right]$	π^{-}
1^{++}	0+	$\mathrm{K}_{0}^{*}(800)$	[1]	π^{-}
1^{++}	0+	$\rho(770)$	$\left[\begin{array}{l}0 \\ 1\end{array}\right]$	K^{-}
1^{++}	0+	$\rho(770)$	$\left[\begin{array}{l}2 \\ 1\end{array}\right]$	K^{-}
1^{++}	1+	K^{*} (892)	[${ }_{0}^{1}$]	π^{-}
1^{++}	1+	$\mathrm{K}_{0}^{*}(800)$	$\left[\begin{array}{l}1 \\ 0\end{array}\right]$	π^{-}
1^{++}	1+	$\rho(770)$	[${ }_{1}^{1}$]	K^{-}
1^{++}	1+	$\mathrm{f}_{0}(600)$	$\left[\begin{array}{l}1 \\ 0\end{array}\right]$	K^{-}
1^{-+}	1+	$\rho(770)$	[1]	K-
2^{++}	1+	$\mathrm{K}^{*}(892)$	$\left[\begin{array}{l}2 \\ 1\end{array}\right]$	π^{-}
2^{++}	1+	$\rho(770)$	$\left[\begin{array}{l}2 \\ 1\end{array}\right]$	K-
2^{-+}	0+	$\mathrm{K}_{2}^{*}(1430)$	$\left[\begin{array}{l}0 \\ 2\end{array}\right]$	π^{-}
2^{-+}	0+	$\mathrm{K}^{*}(892)$	[1]	π^{-}
2^{-+}	0+	$\mathrm{f}_{2}(1270)$	$\left[\begin{array}{l}0 \\ 2\end{array}\right]$	K^{-}
2^{-+}	0+	$\rho(770)$	[1]	K^{-}

The total intensity

Spin totals

Nuclear Physics B187 (1981) 1-41
(C) North-Holland Publishing Company

Spin totals

$\mathrm{J}^{\mathrm{P}}=1^{+}$waves

$J^{\mathrm{P}}=2^{-}$waves

$J^{\mathrm{P}}=2^{+}$waves

$\mathrm{J}^{\mathrm{P}}=0^{-}$waves

Summary and outlook

- Open strangness single diffractive mechanisms show resonant behavior
- Those resonances are understood to be $q \bar{q}$ bar states with isospin $1 / 2$
- The $\mathrm{K}^{-} \pi^{+} \pi^{-}$final state is shown to decay via substates
- Tools of partial wave analysis (PWA) in the Ascoli approach are used to determine resonances
- A mass independent acceptance corrected PWA fit was performed
- Results are mostly in agreement with previous measurements but show also also some interesting features
- For a final conclusion a mass dependent fit has to be performed
- COMPASS is expected to double the number of events found in 2008 when having reconstructed data of 2009

Thank you!
backup slides

Measured strange meson level scheme

FIGURE 2
The quark model level diagram summarizing the status of strange meson spectroscopy; the \mathbf{C} parity is that of the neutral, non-strange members of the relevant $\operatorname{SU}(3)$ multiplet.

resonances fitting the $\mathrm{q} \bar{q}$ model

$n^{2 s+1} \ell_{J}$	$J^{P C}$	$\begin{gathered} \mathrm{I}=1 \\ u \bar{d}, \bar{u} d, \frac{1}{\sqrt{2}}(d \bar{d}-u \bar{u}) \end{gathered}$	$\begin{gathered} \mathrm{I}=\frac{1}{2} \\ u \bar{s}, d \bar{s} ; \bar{d} s,-\bar{u} s \end{gathered}$	$\begin{gathered} \mathrm{I}=0 \\ f^{\prime} \end{gathered}$	$\begin{gathered} \mathrm{I}=0 \\ f \end{gathered}$	$\begin{gathered} \theta_{\text {quad }} \\ {\left[^{\circ}\right]} \end{gathered}$	$\begin{gathered} \theta_{\operatorname{lin}} \\ {\left[^{\circ}\right]} \end{gathered}$
$1^{1} S_{0}$	0^{-+}	π	K	η	$\eta^{\prime}(958)$	-11.5	-24.6
$1^{3} S_{1}$	1^{--}	$\rho(770)$	$K^{*}(892)$	$\phi(1020)$	$\omega(782)$	38.7	36.0
$1^{1} P_{1}$	1^{+-}	$b_{1}(1235)$	$K_{1 B}{ }^{\dagger}$	$h_{1}(1380)$	$h_{1}(1170)$		
$1{ }^{3} P_{0}$	0^{++}	$a_{0}(1450)$	$K_{0}^{*}(1430)$	$f_{0}(1710)$	$f_{0}(1370)$		
$1{ }^{3} P_{1}$	1^{++}	$a_{1}(1260)$	$K_{1 A^{\dagger}}{ }^{\dagger}$	$f_{1}(1420)$	$f_{1}(1285)$		
$1{ }^{3} P_{2}$	2^{++}	$a_{2}(1320)$	$K_{2}^{*}(1430)$	$f_{2}^{\prime}(1525)$	$f_{2}(1270)$	29.6	28.0
$1^{1} D_{2}$	2^{-+}	$\pi_{2}(1670)$	$K_{2}(1770)^{\dagger}$	$\eta_{2}(1870)$	$\eta_{2}(1645)$		
$1^{3} D_{1}$	1^{--}	$\rho(1700)$	$K^{*}(1680)$		$\omega(1650)$		
$1^{3} D_{2}$	2^{--}		$K_{2}(1820)$				
$1^{3} D_{3}$	3^{--}	$\rho_{3}(1690)$	$K_{3}^{*}(1780)$	$\phi_{3}(1850)$	$\omega_{3}(1670)$		
$1^{3} F_{4}$	4^{++}	$a_{4}(2040)$	$K_{4}^{*}(2045)$		$f_{4}(2050)$	$=\psi_{8} \mathrm{co}$	$-\psi_{1}$
$1^{3} G_{5}$	5^{--}	$\rho_{5}(2350)$				$\psi_{8} \mathrm{~s}$	$+\psi_{1}$
$1^{3} H_{6}$	6^{++}	$a_{6}(2450)$			$f_{6}(2510)$	1	
$2{ }^{1} S_{0}$	0^{-+}	$\pi(1300)$	$K(1460)$	$\boldsymbol{\eta}(1475)$	$\eta(1295)$	$\overline{\sqrt{6}}$	$d \bar{d}$
$2^{3} S_{1}$	1^{--}	$\rho(1450)$	$K^{*}(1410)$	$\phi(1680)$	$\omega(1420)$	$=\frac{1}{\sqrt{3}}$	$+d \bar{d}$

\dagger The $1^{+ \pm}$and $2^{- \pm}$isospin $\frac{1}{2}$ states mix. In particular, the $K_{1 A}$ and $K_{1 B}$ are nearly equal (45) mixtures of the $K_{1}(1270)$ and $K_{1}(1400)$. The physical vector mesons listed under $1^{3} D_{1}$ and $2^{3} S_{1}$ may be mixtures of $1^{3} D_{1}$ and $2^{3} S_{1}$, or even have hybrid components.

Resonances as listed in the PDG review

J^{P}	name	mass	width	seen in $\mathrm{K}^{ \pm} \pi^{\mp} \pi^{ \pm}$	note
0^{-}	K	0.494	-	-	
0^{-}	$\mathrm{K}(1460)$	1.460	0.260	$1.460 \Gamma 0.260$	needs confirmation
0^{-}	$\mathrm{K}(1830)$	1.830	0.250	-	needs confirmation
0^{+}	$\mathrm{K}_{0}^{*}(1430)$	1.425	0.270	-	
0^{+}	$\mathrm{K}_{0}^{*}(1950)$	1.945	0.201	-	needs confirmation
1^{-}	$\mathrm{K}^{*}(892)$	0.892	0.051	-	
1^{-}	$\mathrm{K}^{*}(1410)$	1.414	0.232	-	
1^{-}	$\mathrm{K}^{*}(1680)$	1.717	0.322	-	
1^{+}	$\mathrm{K}_{1}(1270)$	1.272	0.090	$1.270 \Gamma 0.090$	
1^{+}	$\mathrm{K}_{1}(1400)$	1.403	0.090	$1.410 \Gamma 0.195$	needs confirmation
1^{+}	$\mathrm{K}_{1}(1650)$	1.650	0.150	$1.800 \Gamma 0.250$	needs confirmation
2^{-}	$\mathrm{K}_{2}(1580)$	1.580	0.110	$1.580 \Gamma 0.110$	
2^{-}	$\mathrm{K}_{2}(1770)$	1.773	0.186	$1.780 \Gamma 0.210$	needs confirmation
2^{-}	$\mathrm{K}_{2}(1820)$	1.816	0.276	$1.840 \Gamma 0.230$	needs confirmation
2^{-}	$\mathrm{K}_{2}(2250)$	2.247	0.180	-	needs confirmation
2^{+}	$\mathrm{K}_{2}(1430)$	1.426	0.099	$1.421 \Gamma 0.100$	
2^{+}	$\mathrm{K}_{2}^{*}(1980)$	1.973	0.373	-	needs confirmation
3^{-}	$\mathrm{K}_{3}(1780)$	1.776	0.159	-	
3^{+}	$\mathrm{K}_{3}(2320)$	2.324	0.180	-	
4^{-}	$\mathrm{K}_{4}^{*}(2500)$	2.490	0.250	-	
4^{+}	$\mathrm{K}_{4}^{*}(2045)$	2.045	0.198	-	
5^{-}	$\mathrm{K}_{5}^{*}(2380)$	2.382	0.178	-	

$J^{\mathrm{P}}=0^{-}$waves

$\mathrm{J}^{\mathrm{p}}=\mathrm{l}^{+} \mathrm{M}=1$ waves

$J^{\mathrm{p}}=1^{-}$waves

$J^{\mathrm{P}}=2^{-}$waves

