

JOHANNES GUTEN

UNIVERS

MAINZ

Hadron 2011 14.06.2011

The $q\overline{q}$ model in a potential

 $|u\bar{s}\rangle |d\bar{s}\rangle |u\bar{s}\rangle |d\bar{s}\rangle \longrightarrow \text{Isospin I} = \frac{1}{2}$

Kaon (494)

Energy = Mass [MeV/c²]

Isospin = $\frac{1}{2}$ light meson spectrum

Kaon (494)

How do we produce those resonances?

Diffractive dissociation into $K^- \pi^+ \pi^-$

The measurement at COMPASS

CEDAR particle identification

CEDAR particle identification

Difference of the cherenkov ring radii of a pion and a kaon is below 0.1 mm at 190 GeV/c beam momentum !

Invariant mass distribution (K⁻ $\pi^+ \pi^-$)

© North-Holland Publishing Company

Invariant mass distributions (K⁻ π^+) and ($\pi^+ \pi^-$)

Determination of acceptance via MC

Acceptance in the $K^- \pi^+ \pi^-$ invariant mass

Acceptance in the Gottfried Jackson frame

Acceptance in the Gottfried Jackson frame

Acceptance corrected partial wave analysis

Acceptance corrected partial wave analysis

Components of the LogLikelihood function:

Production amplitudes \rightarrow Spin density matrix:

$$\rho_{ij}^{\epsilon} = \sum_{r} T_{ir}^{\epsilon} T_{jr}^{\epsilon*}$$

Normalized decay amplitudes:

$$ar{\psi}^\epsilon_i(au) = rac{\psi^\epsilon_i(au)}{\sqrt{\int |\psi^\epsilon_i(au')|^2 \mathrm{d} au'}}$$

Phase space integrals (with acceptance):

$$egin{aligned} & IA_{ij}^{\epsilon} = \int ar{\psi}_i^{\epsilon}(au_n)ar{\psi}_j^{\epsilon}(au_n)^* \mathit{Acc}(au) \mathrm{d} au \ & Acc(au) = igg\{egin{aligned} 0 \ 1 \end{aligned}$$

The partial wave set

	j ^{pc} me		iso1	$\begin{bmatrix} l \\ s \end{bmatrix}$	is <mark>o</mark> 2
	0-+	0+	K*(892)	[]	π^{-}
	0-+	0+	ρ(770)	[1]	К-
	0-+	0+	f ₀ (600)	[0]	K ⁻
	1++	0+	K*(892)	$\begin{bmatrix} 0 \\ 1 \end{bmatrix}$	π^{-}
	1++	0+	K*(892)	$\begin{bmatrix} 2 \\ 1 \end{bmatrix}$	π^{-}
	1++	0+	K ₀ (800)	[6]	π 📃
	1++	0+	ρ(770)	$\begin{bmatrix} 0 \\ 1 \end{bmatrix}$	К-
	1++	0+	ρ(770)	$\begin{bmatrix} 2 \\ 1 \end{bmatrix}$	κ-
	1++	1+	K*(892)	[⁰]	π_
	1++	1+	K ₀ (800)	[]	π_
	1++	1+	ρ(770)	[°]	K -
	1++	1+	f ₀ (600)	[¦]	K-
	1-+	1+	ρ(770)	[]]	К-
	2 ⁺⁺	1+	K*(892)	$\begin{bmatrix} 2 \\ 1 \end{bmatrix}$	π^{-}
	2++	1+	ρ(770)	$[\frac{2}{1}]$	K-
	2-+	0+	K ₂ (1430)	$\begin{bmatrix} 0 \\ 2 \end{bmatrix}$	π^{-}
	2-+	0+	K*(892)	[]]	π^{-}
	2-+	0+	f ₂ (1270)	[0]	K-
	2-+	0+	ρ(770)	[]]	κ-

The total intensity

Spin totals

Spin totals

$J^{P} = 1^{+}$ waves

$J^{P} = 2^{-}$ waves

$J^{P} = 2^{+}$ waves

Summary and outlook

- Open strangness single diffractive mechanisms show resonant behavior
- Those resonances are understood to be $q\overline{q}$ bar states with isospin $\frac{1}{2}$
- The $K^- \pi^+ \pi^-$ final state is shown to decay via substates
- Tools of partial wave analysis (PWA) in the Ascoli approach are used to determine resonances
- A mass independent acceptance corrected PWA fit was performed
- Results are mostly in agreement with previous measurements but show also also some interesting features

- For a final conclusion a mass dependent fit has to be performed
- COMPASS is expected to double the number of events found in 2008 when having reconstructed data of 2009

Thank you!

backup slides

Measured strange meson level scheme

Strange Meson Level Scheme

FIGURE 2

The quark model level diagram summarizing the status of strange meson spectroscopy; the C parity is that of the neutral, non-strange members of the relevant SU(3) multiplet.

resonances fitting the $q\overline{q}$ model

$n^{2s+1}\ell_J$	J^{PC}	$I = 1$ $u\overline{d}, \overline{u}d, \frac{1}{\sqrt{2}}(d\overline{d} - u\overline{u})$	$I = \frac{1}{2}$ $u\overline{s}, d\overline{s}; \overline{ds}, -\overline{us}$	l = 0 f'	I = 0 f	$\begin{array}{c} \theta_{\mathrm{quad}} & \theta_{\mathrm{lin}} \\ \left[\begin{smallmatrix} \mathrm{o} \\ \end{array} \right] & \left[\begin{smallmatrix} \mathrm{o} \\ \end{array} \right] \end{array}$
$1 {}^{1}S_{0}$	0-+	π	K	η	$\eta'(958)$	-11.5 -24.6
$1 {}^{3}S_{1}$	1	ho(770)	$K^{*}(892)$	$\phi(1020)$	$\omega(782)$	38.7 36.0
$1 {}^{1}P_{1}$	1+-	$b_1(1235)$	K_{1B}^{\dagger}	$h_1(1380)$	$h_1(1170)$	
$1 {}^{3}P_{0}$	0++	$a_0(1450)$	$K_0^*(1430)$	$f_0(1710)$	$f_0(1370)$	5
$1 {}^{3}P_{1}$	1++	$a_1(1260)$	K_{1A}^{\dagger}	$f_1(1420)$	$f_1(1285)$	
$1 {}^{3}P_{2}$	2++	$a_2(1320)$	$K_2^*(1430)$	$f_{2}^{\prime}(1525)$	$f_2(1270)$	29.6 28.0
$1 {}^{1}D_{2}$	2-+	$\pi_2(1670)$	$K_2(1770)^\dagger$	$\eta_2(1870)$	$\eta_2(1645)$	
$1 {}^{3}D_{1}$	1	ho(1700)	$K^{*}(1680)$		$\omega(1650)$	
$1 {}^{3}D_{2}$	2		$K_2(1820)$			
$1 {}^{3}D_{3}$	3	$ ho_{3}(1690)$	$K_{3}^{*}(1780)$	$\phi_{3}(1850)$	$\omega_3(1670)$	32.0 31.0
$1 {}^{3}F_{4}$	4++	$a_4(2040)$	$K_{4}^{*}(2045)$		$f_4(2050)$	$f' = \psi_8 \cos \theta - \psi_1 \sin \theta$
$1 {}^3G_5$	5	$\rho_5(2350)$				$f = \psi_8 \sin \theta + \psi_1 \cos \theta$
$1 \ {}^{3}H_{6}$	6 ⁺⁺	$a_6(2450)$			$f_6(2510)$	1,
$2 {}^{1}S_{0}$	0-+	$\pi(1300)$	K(1460)	$\eta(1475)$	$\eta(1295)$	$-\psi_8 = \frac{1}{\sqrt{6}}(u\bar{u} + dd - 2s)$
$2 \ {}^3S_1$	1	ho(1450)	$K^{*}(1410)$	$\phi(1680)$	$\omega(1420)$	$\psi_1 = \frac{1}{\sqrt{3}}(u\bar{u} + d\bar{d} + s)$

[†] The 1^{+±} and 2^{-±} isospin $\frac{1}{2}$ states mix. In particular, the K_{1A} and K_{1B} are nearly equal (45°) mixtures of the $K_1(1270)$ and $K_1(1400)$. The physical vector mesons listed under 1³ D_1 and 2³ S_1 may be mixtures of 1³ D_1 and 2³ S_1 , or even have hybrid components.

Resonances as listed in the PDG review

	JP	name	mass	width	seen in $K^{\pm}\pi^{\mp}\pi^{\pm}$	note
	0-	К	0.494	_	_	
	0^-	K(1460)	1.460	0.260	1.460 Г 0.260	needs confirmation
	0^-	K(1830)	1.830	0.250	_	needs confirmation
	0^+	K ₀ *(1430)	1.425	0.270	_	
	0^+	$K_0^*(1950)$	1.945	0.201	_	needs confirmation
	1-	K*(892)	0.892	0.051	_	
	1-	K*(1410)	1.414	0.232	_	
	1-	K*(1680)	1.717	0.322	_	
	1+	K ₁ (1270)	1.272	0.090	1.270 Г 0.090	
	1+	K ₁ (1400)	1.403	0.090	1.410 Г 0.195	
	1+	$K_1(1650)$	1.650	0.150	1.800 Г 0.250	needs confirmation
	2-	K ₂ (1580)	1.580	0.110	1.580 Г 0.110	needs confirmation
	2-	K ₂ (1770)	1.773	0.186	1.780 Г 0.210	
	2-	K ₂ (1820)	1.816	0.276	1.840 Г 0.230	
	2-	K ₂ (2250)	2.247	0.180	_	needs confirmation
	2+	K ₂ (1430)	1.426	0.099	1.421 Г 0.100	
	2+	$K_{2}^{*}(1980)$	1.973	0.373	_	needs confirmation
	3-	$K_3(1780)$	1.776	0.159	_	
	3+	K ₃ (2320)	2.324	0.180	_	needs confirmation
	4-	K ₄ [*] (2500)	2.490	0.250	_	needs confirmation
	4+	K ₄ [*] (2045)	2.045	0.198	_	
	5-	K ₅ (2380)	2.382	0.178	_	needs confirmation

 $J^{P} = 1^{+} M = 1$ waves

 $J^{P} = 2^{-}$ waves

