LEPS II GeV photons at SPring-8

M. Niiyama (Kyoto Univ.)

Contents

- 1. Introduction to SPring-8/LEPS I
- 2. Physics motivation at LEPS II
- 3. LEPS II project
- 4. Summary

Super Photon Ring 8 GeV (SPring-8)

Schematic View of LEPS I Facility

Backward-Compton Scattered Photon

- ♦ 8 GeV electrons in SPring-8
 - + 351nm Ar laser (3.5eV) 8W→ ~ 2.4 GeV photon
 - + 266nm Solid+BBO (4.6eV) 1W→ +3.0 GeV photon
- Laser Power ~6 W (351nm) → Photon Flux ~1 Mcps (2.4 GeV)
- Ey measured by tagging a recoil electron \rightarrow Ey>1.5 GeV, Δ Ey ~10 MeV
- Laser linear polarization 95-100% \Rightarrow Highly polarized γ beam

Setup of LEPS I

Photoproduction Threshold

_

Physics motivation for LEPS II

K*(890) Y* photoproduction with linearly polarized photon Parity filter

Decay plane $//\overrightarrow{\gamma}$ natural parity exchange $P = (-)^J$

Decay plane $\perp \vec{\gamma}$ unnatural parity exchange $P = -(-)^J$

Physics motivation for LEPS II Θ⁺ LEPS vs CLAS

Strong angular dependence of production rate?

Physics motivation for LEPS II

 ϕ η, ω, η' meson in nuclear medium

Detection of scattered and decay particles

- \rightarrow 4 π acceptance forward to backward
- Detection of charged particles and photons

Schematic view of the LEPS2 facility

Good beam emittance

High Beam Intensity

- LEP intensity $\ge 10^7$ cps for E_{γ}<2.4 GeV beam (355 nm) $\ge 10^6$ cps for E_{γ}<2.9 GeV beam (266 nm)
- ♦ 4-laser injection [x4]
- ◆ Higher power CW lasers.
 355 nm (for 2.4 GeV) 8 W→16 W, 266 nm (for 2.9 GeV) 1 W→2 W
- Laser beam shaping with cylindrical expander

[x2]

[x2]

LEPS II detector setup

Solenoid tracking system

• PID

sideway: TOF ($\Delta t = 50$ psec) forward: TOP (quarts Cerenkov)

- •Side way tracker (TPC)
 - R = 500 mm (24-26 layer),
 - $\sigma_{r\varphi}$ =150um, σ_z =2mm,
- Forward MWDC chamber(450mm)
 ⁴He+Ethane (X/X₀ = 1.1x10⁻³)
 6 plane (x,x', u(45) u'(-45), y y')
 σ_{xy} =150um,

Barrel tracker Cathode strip + Anode wire σ_{rφ} = 250um, σ_z = 2-3 mm

SSD (Cylindrical+ Disk) Double side strip sensor σ=35um, ΔZ< 1 mm at θ>20⁰

Solenoid tracking system

2° <θ< 17 °
 Vertex + Fd MWDC
 No SW tracker

At 10 degree ∆P/P = 1.3% (He4 gas) 1.9% (Air)

θ > 17°

MS effect in SW tracker TPC \Rightarrow Ar/CH₄ or Ne/CH₄

AND NOTE

LEPS2 roadmap

Summary

- Backward Compton γ beam line for hadron physics.
 - Hadrons with s-quark.
 - Recoilless production of light mesons in nucleus.
- **Highly polarized** photon beam up to 3 GeV.
- x10 luminosity.
- 4π detector with solenoid + dipole magnet which cover from very forward to backward.
- Photon and charged particle detection simultaneously.
- Beam will be ready in 2012.
- Physics data taking from 2013.

Why Photon beam ?

- Electro-magnetic coupling : complementary to hadron beam experiment
- Backward Compton
 - Narrow beam : Forward angle measurement
 - Polarization : Parity filter for exchanged particle

Parity filter for exchanged particle in t-channel

Decay Plane // γ natural parity exchange (−1)^J (Pomeron, Scalar Glueball, Scalar mesons)

Decay Plane γ unnatural parity exchange $-(-1)^{J}$ (Pseudoscalar mesons π,η)

Relative contributions from natural, unnatural parity exchanges

Why Photon beam ?

- Electro-magnetic coupling : complementary to hadron beam experiment
- Backward Compton
 - Narrow beam : Forward angle measurement
 - Polarization : Parity filter for exchanged particle

Small production cross section
 → High intensity & large acceptance

$\Delta P/P$ at forward region

2° <θ< 17 °
 Vertex + Fd MWDC
 No SW tracker

At 10 degree ∆P/P = 1.3% (He4 gas) 1.9% (Air)

MS effect in SW tracker TPC \Rightarrow Ar/CH₄ or Ne/CH₄

Momentum dep. of $\Delta P/P$

Requirement

- Detection of the multi-charged particles and neutral particles
 - Reaction (MM) $\Rightarrow \Delta P/P \sim 1\%$ for 1GeV/c kaon

at forward $\boldsymbol{\theta}$

+ π/K separation.

- Decay (IM) \Rightarrow Low momentum down to 0.1GeV/c
- Wide polar angle, smooth and full acceptance for azimuthal direction
 - Coplanarity
 - Decay distribution
 - Polarization measurement