Molecular effects in Charmonium Spectrum

Hadron 2011

Munich, June 2011

P.G. Ortega, D.R. Entem, F. Fernández

University of Salamanca

- Quantum Numbers compatible with $J^{PC} = 1^{++}$ (strongly preferred by the data) and $J^{PC} = 2^{-+}$.
- $\blacksquare \text{ Width}: \Gamma < 2,3 MeV$
- Mass : $M_X = 3871,61 \pm 0,16 \pm 0,19 \ MeV/c^2 \rightarrow \text{below } D^0 D^{*0} \text{ mass}$ threshold of $3871,80 \pm 0,35 \ MeV/c^2$

$$\frac{\mathcal{B}(X \to J/\psi \pi^{+} \pi^{-} \pi^{0})}{\mathcal{B}(X \to J/\psi \pi^{+} \pi^{-})} = 1,0 \pm 0,5,$$

$$\frac{\mathcal{B}(X \to J/\psi \pi^{+} \pi^{-})}{\mathcal{B}(X \to J/\psi \pi^{+} \pi^{-})} = 0,33 \pm 0,12,$$

$$\frac{\mathcal{B}(X \to \psi(2S)\gamma)}{\mathcal{B}(X \to J/\psi \pi^{+} \pi^{-})} = 1,1 \pm 0,4.$$

 $\frac{\mathcal{B}(X \to \psi(2S)\gamma)}{\mathcal{B}(X \to J/\psi\gamma)} < 2,1$

- Quantum Numbers compatible with $J^{PC} = 1^{++}$ (strongly preferred by the data) and $J^{PC} = 2^{-+}$.
- $\blacksquare \text{ Width}: \Gamma < 2,3 MeV$
- Mass : $M_X = 3871,61 \pm 0,16 \pm 0,19 \ MeV/c^2 \rightarrow \text{below } D^0 D^{*0} \text{ mass}$ threshold of $3871,80 \pm 0,35 \ MeV/c^2$

$$\frac{\mathcal{B}(X \to J/\psi \pi^+ \pi^- \pi^0)}{\mathcal{B}(X \to J/\psi \pi^+ \pi^-)} = 1,0 \pm 0,5,$$

$$\frac{\mathcal{B}(X \to J/\psi \gamma)}{\mathcal{B}(X \to J/\psi \pi^+ \pi^-)} = 0,33 \pm 0,12,$$

$$\frac{\mathcal{B}(X \to \psi(2S)\gamma)}{\mathcal{B}(X \to J/\psi \pi^+ \pi^-)} = 1,1 \pm 0,4.$$

$$\frac{\mathcal{B}(X \to \psi(2S)\gamma)}{\mathcal{B}(X \to J/\psi \pi^+ \pi^-)} = 1,1 \pm 0,4.$$

Charmonium - Too heavy for a 1D charmonium state and too light for a 2P one.

- Quantum Numbers compatible with $J^{PC} = 1^{++}$ (strongly preferred by the data) and $J^{PC} = 2^{-+}$.
- $\blacksquare \text{ Width}: \Gamma < 2,3 MeV$
- Mass : $M_X = 3871,61 \pm 0,16 \pm 0,19 \ MeV/c^2 \rightarrow \text{below } D^0 D^{*0} \text{ mass}$ threshold of $3871,80 \pm 0,35 \ MeV/c^2$

$$\frac{\mathcal{B}(X \to J/\psi \pi^{+} \pi^{-} \pi^{0})}{\mathcal{B}(X \to J/\psi \pi^{+} \pi^{-})} = 1,0 \pm 0,5,$$

$$\frac{\mathcal{B}(X \to J/\psi \gamma)}{\mathcal{B}(X \to J/\psi \pi^{+} \pi^{-})} = 0,33 \pm 0,12,$$

$$\frac{\mathcal{B}(X \to \psi(2S)\gamma)}{\mathcal{B}(X \to J/\psi \pi^{+} \pi^{-})} = 1,1 \pm 0,4.$$

$$\frac{\mathcal{B}(X \to \psi(2S)\gamma)}{\mathcal{B}(X \to J/\psi \pi^{+} \pi^{-})} = 1,1 \pm 0,4.$$

Other - Tetraquarks, glueballs, diquark clusters, hybrids,... are other possible explanations.

- Quantum Numbers compatible with $J^{PC} = 1^{++}$ (strongly preferred by the data) and $J^{PC} = 2^{-+}$.
- $\blacksquare \text{ Width}: \Gamma < 2,3 MeV$
- Mass : $M_X = 3871,61 \pm 0,16 \pm 0,19 \ MeV/c^2 \rightarrow \text{below } D^0 D^{*0} \text{ mass}$ threshold of $3871,80 \pm 0,35 \ MeV/c^2$

$$\frac{\mathcal{B}(X \to J/\psi \pi^+ \pi^- \pi^0)}{\mathcal{B}(X \to J/\psi \pi^+ \pi^-)} = 1,0 \pm 0,5,$$

$$\frac{\mathcal{B}(X \to J/\psi \gamma)}{\mathcal{B}(X \to J/\psi \pi^+ \pi^-)} = 0,33 \pm 0,12,$$

$$\frac{\mathcal{B}(X \to \psi(2S)\gamma)}{\mathcal{B}(X \to J/\psi \pi^+ \pi^-)} = 1,1 \pm 0,4.$$

$$\frac{\mathcal{B}(X \to \psi(2S)\gamma)}{\mathcal{B}(X \to J/\psi \pi^+ \pi^-)} = 1,1 \pm 0,4.$$

Molecule - Most popular explanation, but troubles to explain the radiative decay rates.

- Quantum Numbers compatible with $J^{PC} = 1^{++}$ (strongly preferred by the data) and $J^{PC} = 2^{-+}$.
- $\blacksquare \text{ Width}: \Gamma < 2,3 MeV$
- Mass : $M_X = 3871,61 \pm 0,16 \pm 0,19 \ MeV/c^2 \rightarrow \text{below } D^0 D^{*0} \text{ mass}$ threshold of $3871,80 \pm 0,35 \ MeV/c^2$

$$\frac{\mathcal{B}(X \to J/\psi \pi^+ \pi^- \pi^0)}{\mathcal{B}(X \to J/\psi \pi^+ \pi^-)} = 1,0 \pm 0,5,$$

$$\frac{\mathcal{B}(X \to J/\psi \gamma)}{\mathcal{B}(X \to J/\psi \pi^+ \pi^-)} = 0,33 \pm 0,12,$$

$$\frac{\mathcal{B}(X \to \psi(2S)\gamma)}{\mathcal{B}(X \to J/\psi \pi^+ \pi^-)} = 1,1 \pm 0,4.$$

$$\frac{\mathcal{B}(X \to \psi(2S)\gamma)}{\mathcal{B}(X \to J/\psi \pi^+ \pi^-)} = 1,1 \pm 0,4.$$

Experimental data suggest a weakly-bound DD^* **molecule coupled** to a $2P \ c\bar{c}$ state.

The Constituent Quark Model

 $\blacksquare Spontaneous Chiral Symmetry Breaking \rightarrow$

- \rightarrow Constituent quark mass
- \rightarrow Golstone bosons

$$\mathcal{M} = \bar{\Psi}(i\gamma^{\mu}\partial_{\mu} - MU^{\gamma_5})\Psi$$

$$U^{\gamma_{5}} = e^{i\pi^{a}\lambda^{a}\gamma_{5}/f_{\pi}} \sim 1 + \frac{1}{f_{\pi}}\gamma_{5}\lambda^{a}\pi^{a} - \frac{1}{2f_{\pi}^{2}}\pi^{a}\pi^{a}$$

→ Goldstone bosons exchange → σ and κ exchanges Gluon coupling

$${\cal L}_{gqq} = i \sqrt{4\pi lpha_s} ar{\Psi} \gamma_\mu G^\mu_c \lambda^c \Psi$$

- \rightarrow One gluon exchange
- **Confinement**
- **Interactions**:

$$V_{q_i q_j} = \begin{cases} q_i q_j = nn \Rightarrow V_{CON} + V_{OGE} + V_{\pi} + V_{\sigma} + V_{\eta} \\ q_i q_j = nQ \Rightarrow V_{CON} + V_{OGE} \\ q_i q_j = QQ \Rightarrow V_{CON} + V_{OGE} \end{cases}$$

Model Results for 1^{--} sector.

(nL)	States	QM	Exp.
(1S)	J/ψ	3096	$3096,\!916\pm0,\!011$
(2S)	$\psi(2S)$	3703	$3686,\!09\pm0,\!04$
(1D)	$\psi(3770)$	3796	$3772 \pm 1,1$
(3 S)	$\psi(4040)$	4097	4039 ± 1
(2D)	$\psi(4160)$	4153	4153 ± 3
(4S)	Y(4360)	4389	4361 ± 9
(3D)	$\psi(4415)$	4426	4421 ± 4
(5S)	X(4630)	4614	4634^{+9}_{-11}
(4D)	Y(4660)	4641	4664 ± 12

Masses in MeV of $J^{PC} = 1^{--} c\bar{c}$ mesons (*nL*) refers to the dominant partial wave and QM denotes the results of the model.

N.Brambila et al. Eur. Phys. J. C 71, 1534 (2011)

State	<i>m</i> (MeV)	Γ (MeV)	J^{PC}	Process (mode)	Experiment $(\#\sigma)$	Year	Status
X (3872)	3871.52 ± 0.20	1.3 ± 0.6	$1^{++}/2^{-+}$	$B \to K(\pi^+\pi^- J/\psi)$	Belle [85, 86] (12.8), BABAR [87] (8.6)	2003	OK
		(<2.2)		$p\bar{p} \rightarrow (\pi^+\pi^- J/\psi) + \cdots$	CDF [88–90] (np), DØ [91] (5.2)		
				$B \to K(\omega J/\psi)$	Belle [92] (4.3), BABAR [93] (4.0)		
				$B \to K(\bar{D^{*0}D^0})$	Belle [94, 95] (6.4), BABAR [96] (4.9)		
				$B \to K(\gamma J/\psi)$	Belle [92] (4.0), BABAR [97, 98] (3.6)		
				$B \to K(\gamma \psi(2S))$	BABAR [98] (3.5), Belle [99] (0.4)		
X(3915)	3915.6 ± 3.1	28 ± 10	$0/2^{?+}$	$B \to K(\omega J/\psi)$	Belle [100] (8.1), BABAR [101] (19)	2004	OK
				$e^+e^- \to e^+e^-(\omega J/\psi)$	Belle [102] (7.7)		
X (3940)	3942^{+9}_{-8}	37^{+27}_{-17}	$2^{?+}$	$e^+e^- \to J/\psi(D\bar{D}^*)$	Belle [103] (6.0)	2007	NC!
				$e^+e^- \rightarrow J/\psi \; (\ldots)$	Belle [54] (5.0)		
G(3900)	3943 ± 21	52 ± 11	1	$e^+e^- \to \gamma(D\bar{D})$	BABAR [27] (np), Belle [21] (np)	2007	OK
Y(4008)	4008^{+121}_{-49}	226 ± 97	1	$e^+e^- \to \gamma (\pi^+\pi^-J/\psi)$	Belle [104] (7.4)	2007	NC!
$Z_1(4050)^+$	4051_{-43}^{+24}	82^{+51}_{-55}	?	$B \to K(\pi^+ \chi_{c1}(1P))$	Belle [105] (5.0)	2008	NC!
Y(4140)	4143.4 ± 3.0	15^{+11}_{-7}	$?^{?+}$	$B \to K(\phi J/\psi)$	CDF [106, 107] (5.0)	2009	NC!
X(4160)	4156^{+29}_{-25}	139^{+113}_{-65}	??+	$e^+e^-\to J/\psi(D\bar{D}^*)$	Belle [103] (5.5)	2007	NC!
$Z_{2}(4250)^{+}$	4248^{+185}_{-45}	177^{+321}_{-72}	?	$B \rightarrow K(\pi^+ \chi_{c1}(1P))$	Belle [105] (5.0)	2008	NC!

N.Brambila et al. Eur. Phys. J. C 71, 1534 (2011)

State	<i>m</i> (MeV)	Γ (MeV)	J^{PC}	Process (mode)	Experiment (# σ)	Year	Status
Y(4260)	4263 ± 5	108 ± 14	1	$e^+e^- o \gamma (\pi^+\pi^- J/\psi)$	BABAR [108, 109] (8.0)	2005	OK
					CLEO [110] (5.4)		
					Belle [104] (15)		
				$e^+e^- \to (\pi^+\pi^-J/\psi)$	CLEO [111] (11)		
				$e^+e^- \to (\pi^0\pi^0 J/\psi)$	CLEO [111] (5.1)		
Y(4274)	$4274.4_{-6.7}^{+8.4}$	32^{+22}_{-15}	$?^{?+}$	$B \to K(\phi J/\psi)$	CDF [107] (3.1)	2010	NC!
X(4350)	$4350.6^{+4.6}_{-5.1}$	$13.3^{+18.4}_{-10.0}$	0,2++	$e^+e^- \to e^+e^-(\phi J/\psi)$	Belle [112] (3.2)	2009	NC!
Y(4360)	4353 ± 11	96 ± 42	1	$e^+e^- \to \gamma(\pi^+\pi^-\psi(2S))$	BABAR [113] (np), Belle [114] (8.0)	2007	OK
$Z(4430)^+$	4443^{+24}_{-18}	107^{+113}_{-71}	?	$B \to K(\pi^+ \psi(2S))$	Belle [115, 116] (6.4)	2007	NC!
X(4630)	4634^{+9}_{-11}	92^{+41}_{-32}	1	$e^+e^- \to \gamma(\Lambda_c^+\Lambda_c^-)$	Belle [25] (8.2)	2007	NC!
Y(4660)	4664 ± 12	48 ± 15	1	$e^+e^- \to \gamma(\pi^+\pi^-\psi(2S))$	Belle [114] (5.8)	2007	NC!
$Y_b(10888)$	10888.4 ± 3.0	$30.7^{+8.9}_{-7.7}$	1	$e^+e^- \rightarrow (\pi^+\pi^-\Upsilon(nS))$	Belle [37, 117] (3.2)	2010	NC!

Meson	Mass (Exp)	Candidate?	J^{PC}	Mass (Th)
Y(4360)	4353 ± 11	$\psi(4S)$	1	4389
X(4630)	4634_{-11}^{+9}	$\psi(5S)$	1	4614
Y(4660)	4664 ± 12	$\psi(4D)$	1	4641
X(4160)	4156 ± 15	η_{c2}	2^{-+}	4166

Candidates for some XYZ mesons in our CQM $c\bar{c}$ spectrum.

No $c\bar{c}$ candidates for X(3872), X(3915), X(3940), G(3900), Y(4008), Y(4140), Y(4260), Y(4274), X(4350),

${}^{3}P_{0}$ model

Pair creation Hamiltonian:

$$\mathcal{H} = g \int d^3x \bar{\psi}(x) \psi(x)$$

Non relativistic reduction:

$$T = -3\sqrt{2}\gamma' \sum_{\mu} \int d^3p d^3p' \,\delta^{(3)}(p+p') \left[\mathcal{Y}_1\left(\frac{p-p'}{2}\right) b^{\dagger}_{\mu}(p) d^{\dagger}_{\nu}(p') \right]^{C=1,I=0,S=1,J=0}$$

with $\gamma'=2^{5/2}\pi^{1/2}\gamma$, $\gamma=rac{g}{2m}$ (in the light quark sector)

■ Transition potential:

$$\left\langle \phi_{M_1} \phi_{M_2} \beta \right| T \left| \psi_{\alpha} \right\rangle = P h_{\beta \alpha}(P) \delta^{(3)}(\vec{P}_{cm})$$

${}^{3}P_{0}$ results for $c\bar{c}$ strong decays

 γ parameter fitted to $\psi(3770) \rightarrow DD$ Phys. Rev. D 78, 114033 (2008).

Meson	Dominant Mode	Γ_{QM} (MeV)	Γ_{exp} (MeV)
$\psi(3770)$	DD	22,2	$22,4\pm2,5$
	D^+D^-	9,5	$9,5\pm1,4$
	$D^0 ar{D}^0$	12,7	$12,8\pm1,8$
$\psi(4040)$	D^*D^*	$92,\!9$	80 ± 10
$\psi(4160)$	D^*D^*	96,8	103 ± 8
$\psi(4360)$	DD_1	89,8	103 ± 11
$\psi(4415)$	DD_1	113,1	$119 \pm 16(^{*})$
$\psi(4660)$	D^*D^*	107,9	42 ± 6

Ratio	Experimental value	${}^{3}P_{0}$
$\frac{\mathcal{B}(\psi(4040) \rightarrow D\bar{D})}{\mathcal{B}(\psi(4040) \rightarrow D\bar{D}^*)}$	$0,24 \pm 0,05 \pm 0,12$	0,21
$\frac{\mathcal{B}(\psi(4040) \rightarrow D^* \bar{D}^*)}{\mathcal{B}(\psi(4040) \rightarrow D\bar{D}^*)}$	$0,18 \pm 0,14 \pm 0,03$	3,7
$\frac{\mathcal{B}(\psi(4160) \to D\bar{D})}{\mathcal{B}(\psi(4160) \to D^*\bar{D}^*)}$	$0,02 \pm 0,03 \pm 0,02$	$0,\!27$
$\frac{\mathcal{B}(\psi(4160) \to D\bar{D}^*)}{\mathcal{B}(\psi(4160) \to D^*\bar{D}^*)}$	$0,34 \pm 0,14 \pm 0,05$	0,027

The M_1M_2 system

- \blacksquare **Quark interactions** \rightarrow **Cluster interaction.**
- **\square** For the $D\overline{D}$ system only direct RGM Potential:

■ $\phi_C(\vec{p}_C)$ is the wave function for cluster *C* solution of Schrödinger's equation using Gaussian Expansion Method.

The M_1M_2 system

- \blacksquare **Quark interactions** \rightarrow **Cluster interaction.**
- **\square** For the $D\overline{D}$ system only direct RGM Potential:

■ $\phi_C(\vec{p}_C)$ is the wave function for cluster *C* solution of Schrödinger's equation using Gaussian Expansion Method.

Rearrangement processes (like $D\bar{D} \rightarrow J/\psi\omega$)

Coupling $q\bar{q}$ and $q\bar{q}\bar{q}q$ sectors

Hadronic state: $|\Psi\rangle = \sum_{\alpha} c_{\alpha} |\psi\rangle + \sum_{\beta} \chi_{\beta}(P) |\phi_{M1}\phi_{M2}\beta\rangle$

Solving the coupling with $c\bar{c}$ states \rightarrow Schrödinger type equation:

$$\sum_{\beta} \int \left(H^{M_1 M_2}_{\beta'\beta}(P',P) + V^{eff}_{\beta'\beta}(P',P) \right) \chi_{\beta}(P) P^2 dP = E \chi_{\beta'}(P')$$

with

First results

 \blacksquare ${}^{3}S_{1}$ and ${}^{3}D_{1}$ DD^{*} partial waves included.

Coupling to 1^{++} ground and first excited $c\bar{c}$ states with bare masses within the model:

 $c\bar{c}(1^{3}P_{1}) \rightarrow M = 3503,9 \; MeV$ $c\bar{c}(2^{3}P_{1}) \rightarrow M = 3947,4 \; MeV.$

First results:

$M\left(MeV ight)$	$c\bar{c}(1^3P_1)$	$c\bar{c}(2^3P_1)$	$D^{0}D^{*0}$	$D^{\pm}D^{*\mp}$	Assignment
3936	0 %	79~%	10,5%	10,5%	$\rightarrow X(3940)$
3865	1~%	32~%	$_{33,5\%}$	$_{33,5\%}$	$\rightarrow X(3872)$
3467	95%	0 %	2,5%	2,5%	$\rightarrow \chi_{c1}(3510)$

Parameter free calculation.

Isospin breaking

Charge basis \rightarrow Isospin breaking:

$$|D^{\pm}D^{*\mp}\rangle = \frac{1}{\sqrt{2}} (|DD^*I=0\rangle - |DD^*I=1\rangle)$$
$$|D^0D^{*0}\rangle = \frac{1}{\sqrt{2}} (|DD^*I=0\rangle + |DD^*I=1\rangle)$$

$M\left(MeV ight)$	$c\bar{c}(1^3P_1)$	$c\bar{c}(2^3P_1)$	$D^{0}D^{*0}$	$D^{\pm}D^{*\mp}$	Assignment
3937	0 %	79~%	7~%	14~%	$\rightarrow X(3940)$
3863	1~%	30~%	46%	23%	$\rightarrow X(3872)$
3467	95~%	0 %	2,5%	2,5%	$\rightarrow \chi_{c1}(3510)$

Isospin probabilities:

- $\blacksquare I = 0 \rightarrow \mathcal{P} = 66 \%,$
- $\square I = 1 \rightarrow \mathcal{P} = 3\%.$

Final results

 $\gamma a 25 \%$ smaller $\rightarrow E_{bind} = -0.6 MeV.$

M(MeV)	$c\bar{c}(1^3P_1)$	$c\bar{c}(2^3P_1)$	$D^{0}D^{*0}$	$D^{\pm}D^{*\mp}$	Assignment
3942	0 %	88~%	4%	8 %	$\rightarrow X(3940)$
3871	0 %	7~%	83%	10~%	$\rightarrow X(3872)$
3484	97%	0%	1,5%	1,5~%	$\rightarrow \chi_{c1}(3510)$

Isospin probabilities:

- $\square I = 0 \rightarrow \mathcal{P} = 70 \%,$
- $\square I = 1 \rightarrow \mathcal{P} = 23 \%.$

Comparison with data

Flatte parametrization

Following V. Baru et al. Phys. Lett. B 586, 53 (2004)

$$F_{DD^{*}}^{\beta}(P, P; E) = -\pi\mu \sum_{\alpha} \frac{h_{\beta\alpha}^{2}(P)}{E - M_{\alpha} + g_{DD^{*}}^{\alpha}(E)}$$

$$g^{\alpha}_{DD^*}(E) = \sum_{\beta} \int \frac{h^2_{\beta\alpha}(P)}{\frac{P^2}{2\mu} - E - i0^+} P^2 dP \sim \bar{E}^{\alpha}_{DD^*} + \frac{i}{2} \Gamma^{\alpha}_{DD^*} + \mathcal{O}(4\mu^2 \epsilon/\Lambda^2)$$

for small binding energies

$$\frac{dBr(B \to KD^0 D^{*0})}{dE} = \mathcal{B}\frac{1}{2\pi} \frac{\Gamma_{D^0 D^{*0}}(E)}{|D(E)|^2}$$
$$\frac{dBr(B \to K\pi^+\pi^- J/\Psi)}{dE} = \mathcal{B}\frac{1}{2\pi} \frac{\Gamma_{\pi^+\pi^- J/\Psi}(E)}{|D(E)|^2}.$$
$$D(E) = E - E_f + \frac{i}{2}(\Gamma_{D^0 D^{*0}} + \Gamma_{D^+ D^{*-}} + \Gamma(E)) + \mathcal{O}(4\mu^2\epsilon/\Lambda^2)$$

We calculate

$$\Gamma_{\pi^+\pi^-J/\Psi} = \sum_{JL} \int_0^{k_{max}} dk \frac{\Gamma_{\rho}}{(M_X - E_{\rho} - E_{J/\Psi})^2 + \frac{\Gamma_{\rho}^2}{4}} \left| \mathcal{M}_{X \to \rho J/\Psi}^{JL}(k) \right|^2.$$

Belle and BaBar data

solid (dashed) line with (without) resolution function

$$N_{Belle}^{D^0 \bar{D}^0 \pi^0}(E) = 2,0 [\text{MeV}] \left(\frac{48,3}{0,73\,10^{-4}}\right) \frac{dBr(B \to KD^0 \bar{D}^0 \pi^0)}{dE}$$
$$N_{BaBar}^{D^0 D^{*0}}(E) = 2,0 [\text{MeV}] \left(\frac{33,1}{1,67\,10^{-4}}\right) \frac{dBr(B \to KD^0 \bar{D}^{*0})}{dE}$$

Belle and BaBar data

 $B \to K \pi^+ \pi^- J / \Psi$ data

solid (dashed) line with (without) resolution function

$$N_{Belle}^{\pi\pi J/\Psi}(E) = 2,5 [\text{MeV}] \left(\frac{131}{8,3\,10^{-6}}\right) \frac{dBr(B \to K\pi^+\pi^- J/\Psi)}{dE}$$
$$N_{BaBar}^{\pi\pi J/\Psi}(E) = 5 [\text{MeV}] \left(\frac{93,4}{8,4\,10^{-6}}\right) \frac{dBr(B \to K\pi^+\pi^- J/\Psi)}{dE}$$

Lippman-Schwinger equation

$$T^{\beta'\beta}(E;P',P) = V_T^{\beta'\beta}(P',P) + \sum_{\beta''} \int dP'' P''^2 V_T^{\beta'\beta''}(P',P'') \frac{1}{E - E_{\beta''}(P'')} T^{\beta''\beta}(E;P'',P)$$

with $V_T^{\beta'\beta}(P',P) = V^{\beta'\beta}(P',P) + V_{eff}^{\beta'\beta}(P',P), V_{\beta'\beta}^{eff}(P',P) = \sum_{\alpha} \frac{h_{\beta'\alpha}(P')h_{\alpha\beta}(P)}{E-M_{\alpha}}$

Lippman-Schwinger equation

$$T^{\beta'\beta}(E;P',P) = V_T^{\beta'\beta}(P',P) + \sum_{\beta''} \int dP'' P''^2 V_T^{\beta'\beta''}(P',P'') \frac{1}{E - E_{\beta''}(P'')} T^{\beta''\beta}(E;P'',P)$$

with $V_T^{\beta'\beta}(P',P) = V^{\beta'\beta}(P',P) + V_{eff}^{\beta'\beta}(P',P), V_{\beta'\beta}^{eff}(P',P) = \sum_{\alpha} \frac{h_{\beta'\alpha}(P')h_{\alpha\beta}(P)}{E-M_{\alpha}}$ Solution (Baru et al. Eur. Phys. Jour. A 44, 93 (2010))

$$T^{\beta'\beta}(E;P',P) = T_V^{\beta'\beta}(E;P',P) + \sum_{\alpha,\alpha'} \phi^{\beta'\alpha'}(E;P') \Delta_{\alpha'\alpha}^{-1}(E) \bar{\phi}^{\alpha\beta}(E;P)$$

Non resonant contribution

Resonant contribution

with

 $T_{V}^{\beta'\beta}(E;P',P) = V^{\beta'\beta}(P',P) + \sum_{\beta''} \int dP'' P''^{2} V^{\beta'\beta''}(P',P'') \frac{1}{z - E_{\beta''}(P'')} T_{V}^{\beta''\beta}(E;P'',P)$

with

$$\phi^{\alpha\beta'}(E;P) = h_{\alpha\beta'}(P) - \sum_{\beta} \int \frac{T_V^{\beta'\beta}(E;P,q)h_{\alpha\beta}(q)}{q^2/2\mu - E} q^2 dq,$$

$$\bar{\phi}^{\alpha\beta}(E;P) = h_{\alpha\beta}(P) - \sum_{\beta'} \int \frac{h_{\alpha\beta'}(q)T_V^{\beta'\beta}(E;q,P)}{q^2/2\mu - E} q^2 dq$$

Solution (Baru et al. Eur. Phys. Jour. A 44, 93 (2010))

$$T^{\beta'\beta}(E;P',P) = T_V^{\beta'\beta}(E;P',P) + \sum_{\alpha,\alpha'} \phi^{\beta'\alpha'}(E;P')\Delta_{\alpha'\alpha}^{-1}(E)\bar{\phi}^{\alpha\beta}(E;P)$$

Non resonant contribution

Resonant contribution

with

$$\Delta^{\alpha'\alpha}(E) = \left\{ (E - M_{\alpha})\delta^{\alpha'\alpha} + \mathcal{G}^{\alpha'\alpha}(E) \right\}$$
$$\mathcal{G}^{\alpha'\alpha}(E) = \sum_{\beta} \int dq q^2 \frac{\phi^{\alpha\beta}(q, E)h_{\beta\alpha'}(q)}{q^2/2\mu - E}$$

Resonance mass (pole position in the second Riemann sheet)

$$\left|\Delta^{\alpha'\alpha}(\bar{E})\right| = \left|(\bar{E} - M_{\alpha})\delta^{\alpha'\alpha} + \mathcal{G}^{\alpha'\alpha}(\bar{E})\right| = 0$$

Bare $c\bar{c}$ **probabilities**

$$\left\{M_{\alpha}\delta^{\alpha\alpha'} - \mathcal{G}^{\alpha'\alpha}(\bar{E})\right\}c_{\alpha'}(\bar{E}) = \bar{E}c_{\alpha}(\bar{E})$$

■ Molecular wave function

$$\chi_{\beta'}(P') = -2\mu_{\beta'} \sum_{\alpha} \frac{\phi_{\beta'\alpha}(E;P')c_{\alpha}}{P'^2 - k_{\beta'}^2}$$

■ Normalization

$$\sum_{\alpha} |c_{\alpha}|^2 + \sum_{\beta} \langle \chi_{\beta} | \chi_{\beta} \rangle = 1$$

Partial widths

The scattering matrix is

$$S^{\beta'\beta}(E) = -i2\pi\delta^4(p_f - p_i)\sum_{\alpha,\alpha'}\phi^{\beta'\alpha'}(k,E)\Delta_{\alpha'\alpha}^{-1}(E)\bar{\phi}^{\alpha\beta}(k,E) + S_{bg}^{\beta'\beta}(E)$$

with

$$\square \ \Delta_{\alpha'\alpha}(E) \sim (E - \bar{E}) \left[\delta_{\alpha'\alpha} + \mathcal{G}'_{\alpha'\alpha}(\bar{E}) \right] = (E - \bar{E}) \mathcal{Z}_{\alpha'\alpha}(\bar{E})$$
$$\square \ \mathcal{G}'_{\alpha'\alpha}(\bar{E}) = \lim_{E \to \bar{E}} \frac{\mathcal{G}_{\alpha'\alpha}(E) - \mathcal{G}_{\alpha'\alpha}(\bar{E})}{E - \bar{E}}$$

and then

$$S^{\beta'\beta}(E) \sim -i2\pi\delta^4(p_f - p_i) \sum_{\alpha, \alpha', \lambda} \frac{\left[\phi^{\beta'\alpha'}(\bar{k}, \bar{E})\mathcal{Z}_{\alpha'\lambda}^{-1/2}(\bar{E})\right] \left[\mathcal{Z}_{\lambda\alpha}^{-1/2}(E)\bar{\phi}^{\alpha\beta}(\bar{k}, \bar{E})\right]}{E - \bar{E}} + S_{bg}^{\beta'\beta}(E)$$

So

$$S(X_c \to f)^{\beta\alpha} = \sum_{\lambda} \phi^{\beta\lambda}(\bar{k}, \bar{E}) \mathcal{Z}_{\lambda\alpha}^{-1/2}(\bar{E})$$

We define the partial width

$$\hat{\Gamma}_{\beta} = 2\pi \frac{E_A E_B}{E_R} k_{o\beta} \sum_{\alpha,\lambda,\lambda'} \phi^{*\beta\lambda'}(\bar{k}) \left(\mathcal{Z}(\bar{E})^{-1/2} \right)_{\lambda'\alpha}^* \mathcal{Z}(\bar{E})_{\lambda\alpha}^{-1/2} \phi^{\beta\lambda}(\bar{k}) \quad \mathcal{B}_{\beta} = \frac{\hat{\Gamma}_{\beta}}{\sum_{\beta} \hat{\Gamma}_{\beta}} \quad \Gamma_{\beta} = \mathcal{B}_{\beta} \Gamma_{\beta}$$

The 0^{++} sector

Bare $c\bar{c} \ 2^3 P_0$ (3909)

Meson channels: $DD + J/\psi\omega + D_sD_s + J/\psi\phi$

Mass(MeV)	$2^{3}P_{0}$	DD	$J/\psi\omega$	$D_s D_s$	$J/\psi\phi$	Γ_{DD}	$\Gamma_{J/\psi\omega}$	$\Gamma_{D_s D_s}$
3896,05 - i2,10	$34,\!22$	$46,\!67$	$9,\!41$	$9,\!67$	0,03	$3,\!37$	$0,\!83$	_
3970,07 - i94,67	$57,\!27$	$35,\!32$	$0,\!15$	5,72	$1,\!54$	$38,\!69$	$2,\!89$	$147,\!76$
		E.J. Ei	chten et a	l. Phys. Re	ev. D 73 01	14014 (20)05) (C^3)	
3881, 4 - i30, 75	49	34,22	_	$4,\!41$	_			

X(3945) and $Y(3940) \to X(3915)$

Uehara et al. PRL 104, 092001 $M = 3915 \pm 3 \pm 2 \Gamma = 17 \pm 10 \pm 3 \ e^+e^- \rightarrow e^+e^- \omega J/\psi$ Choi et al. PRL 94, 182002 $M = 3943 \pm 11 \pm 13 \ \Gamma = 87 \pm 22 \pm 26 \ B \rightarrow \omega J/\psi K$

The 1^{--} sector

Bare $c\bar{c} \ 3^3S_1$ (4097) and 2^3D_1 (4153)

Meson channels: $DD + DD^* + D^*D^* + D_sD_s + D_sD_s^* + D_s^*D_s^*$

M(MeV)	$3^{3}S_{1}$	$2^{3}D_{1}$	DD	 DD*	D^*D^*	$D_a D_a$	$D_{a}D^{*}$	 D* D*
3094.6 - i11.60	31 56	3 00	2 40	36.44	17 75	7 53	$\frac{D_s D_s}{0.52}$	$\frac{D_s D_s}{0.71}$
4048.4 - i7.54	0.92	36.15	2,49 2.99	23.49	25.81	7,95 8.86	0.92	0.85
4123,9 - i71,11	59,01	0,98	2,13	6,84	19,19	0,75	3,37	7,73
		E.J. Eic	hten et a	al. Phys. H	Rev. D 73 0	14014 (20	05) (C ³)	
4038 - i37	44,89	0,16	2,87	20,36	$23,\!10$	$0,\!98$	1,58	1,08
(4160) - i24,6	$0,\!09$	$47,\!61$	8,37	$4,\!24$	8,87	$0,\!55$	0,96	$1,\!31$

M	Г	$\Gamma(DD)$	$\Gamma(DD^*)$	$\Gamma(D^*D^*)$	$\Gamma(D_s D_s)$	$\Gamma(D_s D_s^*)$
$3994,\! 6$	$23,\!37$	0,12	19,09		$4,\!16$	235
4048, 4	15,09	0,51	$7,\!24$	$4,\!42$	$2,\!92$	
4123,9	$142,\!23$	4,73	$7,\!51$	100,03	$3,\!82$	$26,\!15$

The 1^{--} sector

Ratio	Experimental value	$qar{q}$ with 3P_0	Coupled channel
$\frac{\mathcal{B}(\psi(4040) \rightarrow D\bar{D})}{\mathcal{B}(\psi(4040) \rightarrow D\bar{D}^*)}$	$0,24 \pm 0,05 \pm 0,12$	0,21	0,07
$\frac{\mathcal{B}(\psi(4040) \rightarrow D^* \bar{D}^*)}{\mathcal{B}(\psi(4040) \rightarrow D\bar{D}^*)}$	$0{,}18\pm0{,}14\pm0{,}03$	$3,\!7$	$0,\!61$
$\frac{\mathcal{B}(\psi(4160) \rightarrow D\bar{D})}{\mathcal{B}(\psi(4160) \rightarrow D^*\bar{D}^*)}$	$0,02 \pm 0,03 \pm 0,02$	$0,\!27$	$0,\!05$
$\frac{\mathcal{B}(\psi(4160) \to D\bar{D}^*)}{\mathcal{B}(\psi(4160) \to D\bar{D}^*)}$	$0.34 \pm 0.14 \pm 0.05$	0.027	0.08

Summary

- We have performed a couple channel calculation in a phenomenological chiral constituent quark model including $q\bar{q}$ and $q\bar{q}\bar{q}q$ configurations
- The coupling between DD^* and $c\bar{c}$ states in the 1^{++} sector generates a new bound state that we assigned to the X(3872)
- We have analyzed the Belle and BaBar data for the decays $B \to KD^0 \overline{D}{}^0 \pi^0$ and $B \to K\pi^+\pi^- J/\Psi$ finding a good agreement.
- \blacksquare We find a candidate for X(3940) as a $\chi_{c1}(2P)$ state with a sizable DD^* component
- In the 0⁺⁺ sector we find two states in the 3900 MeV energy range
- \blacksquare In the 1⁻⁻ sector we find a new state that could be the G(3900) or the Y(4008)
- \blacksquare In the 1^{--} sector the original 3S and 2D states get mixed and they change the order
- The coupled channel calculation is in less disagreement with the experimental branchings than the original naive quark model result

γ	E_{bind}	$c\bar{c}(2^3P_1)$	$D^{0}D^{*0}$	$D^{\pm}D^{*\mp}$	$J/\psi ho$	$J/\psi\omega$
0,231	$-0,\!60$	12,40	79,24	7,46	0,49	0,40
0,226	-0,25	8,00	86,61	$4,\!58$	$0,\!53$	$0,\!29$

E_{bind} (MeV)	$\Gamma_{\pi^+\pi^-J/\psi}$	$\Gamma_{\pi^+\pi^-\pi^0J/\psi}$	R_1
$-0,\!60$	$27,\!61$	14,40	$0,\!52$
-0,25	$24,\!18$	$10,\!64$	$0,\!44$

211-1-13

$$R_{1} = \frac{X(3872) \to \pi^{+}\pi^{-}\pi^{0}J/\psi}{X(3872) \to \pi^{+}\pi^{-}J/\psi} = 1,0 \pm 0,4 \pm 0,3$$

E_{bind} (MeV)	$\Gamma^{VMD}_{J/\psi\gamma}$	$\Gamma^{ANN}_{J/\psi\gamma}$	R_2^M	$\Gamma^{car{c}}_{J/\psi\gamma}$	$R_2^{c\bar{c}}$	R_2
$-0,\!60$	0,014	0,056	0,0025	8,15	0,29	0,30
-0,25	$0,\!011$	$0,\!045$	0,0023	$5,\!25$	$0,\!22$	$0,\!22$

2 ACH

$$R_{1} = \frac{X(3872) \rightarrow \pi^{+}\pi^{-}\pi^{0}J/\psi}{X(3872) \rightarrow \pi^{+}\pi^{-}J/\psi} = 1,0 \pm 0,4 \pm 0,3$$

$$R_{2} = \frac{\Gamma(X(3872) \rightarrow \gamma J/\psi)}{\Gamma(X(3872) \rightarrow \pi^{+}\pi^{-}J/\psi)} = 0,14 \pm 0,05 \quad 0,33 \pm 0,12$$

E_{bind} (MeV)	$\Gamma^{ANN}_{\Psi(2S)\gamma}$	R_3^M	$\Gamma^{c\bar{c}}_{\Psi(2S)\gamma}$	$R_3^{c\bar{c}}$	R_3
$-0,\!60$	$0,\!134$	0,0048	$9,\!80$	$0,\!35$	$0,\!34$
-0,25	$0,\!101$	0,0042	$6,\!31$	$0,\!26$	$0,\!26$

$$R_{1} = \frac{X(3872) \rightarrow \pi^{+}\pi^{-}\pi^{0}J/\psi}{X(3872) \rightarrow \pi^{+}\pi^{-}J/\psi} = 1,0 \pm 0,4 \pm 0,3$$

$$R_{2} = \frac{\Gamma(X(3872) \rightarrow \gamma J/\psi)}{\Gamma(X(3872) \rightarrow \pi^{+}\pi^{-}J/\psi)} = 0,14 \pm 0,05 \quad 0,33 \pm 0,12$$

$$R_{3} = \frac{\Gamma(X(3872) \rightarrow \gamma \psi(2S))}{\Gamma(X(3872) \rightarrow \pi^{+}\pi^{-}J/\psi)} = 1,1 \pm 0,4$$

E _{bind} (MeV) R_3/R_2
-0,60	1,13
-0,25	$1,\!18$

V ZAEFA

$$R_{1} = \frac{X(3872) \rightarrow \pi^{+}\pi^{-}\pi^{0}J/\psi}{X(3872) \rightarrow \pi^{+}\pi^{-}J/\psi} = 1,0 \pm 0,4 \pm 0,3$$

$$R_{2} = \frac{\Gamma(X(3872) \rightarrow \gamma J/\psi)}{\Gamma(X(3872) \rightarrow \pi^{+}\pi^{-}J/\psi)} = 0,14 \pm 0,05 \quad 0,33 \pm 0,12$$

$$R_{3} = \frac{\Gamma(X(3872) \rightarrow \gamma \psi(2S))}{\Gamma(X(3872) \rightarrow \pi^{+}\pi^{-}J/\psi)} = 1,1 \pm 0,4$$

$$\frac{R_{3}}{R_{2}} = \frac{\mathcal{B}(X \rightarrow \psi(2S)\gamma)}{\mathcal{B}(X \rightarrow J/\psi\gamma)} < 2,1$$

The Y(4360)

 $e^+e^- \to D^0 D^- \pi^+$ (through $DD_2^*(2460)$)

The Y(4360)

Y(4360) $\psi(4415)$ 60 80 M = 4361 MeV M = 4421 MeV 70 50 60 40 50 Γ (MeV) Γ (MeV) 30 40 30 20 20 D^*D^* 10 DD_1 10 DD₁ DD_2^* DD 0 0 4.4 4.3 4.4 4.5 4.5 4.3 4.6 4.2 4.2 M(X(4360)) (GeV) M(ψ(4415)) (GeV)

 $e^+e^- \to D^0 D^- \pi^+$ (through $DD_2^*(2460)$)

J. Segovia et al., accepted for publication in Phys. Rev. D PDG data $\mathcal{B}(X \to D^0 D^{*-} \pi^+) / \mathcal{B}(X \to \pi^+ \pi^- \psi(2S)) < 8$ **Model** $\Gamma(D^0 D^{*-} \pi^+) = \Gamma(X(4360) \to D^{*+} D^{*-}) \mathcal{B}(D^{*+} \to D^0 \pi^+) = 2.5 \text{ MeV}$ **So** $\Gamma(X(4360) \to \psi(2S)\pi^+\pi^-) \sim 300 \text{ keV}$