Precision calculation of the pion electromagnetic form factor from lattice QCD

arXiv:1106.1554 [hep-lat]

Contents

$1. \ \ \text{Introduction and motivation}$

The electromagnetic vector form factor of the pion as a high precision lattice observable

2. Lattice regularisation

Form factors from the lattice

3. Results

Form factor and charge radius

4. Conclusions and outlook

1. Introduction:

The electromagnetic vector form factor of the pion as a high precision lattice observable

Lattice QCD and experiment

 Recently lattice QCD has evolved in producing reliable results for a lot of physical quantities.
 Some of them collected in the reviews:

[Colangelo *et al* (FLAG) arXiv:1011.4408]; Lunghi, Laiho, Van de Water arXiv:1102.3917 (See plenary talk by Andreas Jüttner tomorrow)

- Nevertheless: Some quantities fail to reproduce physical results! (e.g. baryonic form factors, etc.)
- In general this might be due to the fact that simulations still lack full control of systematic effects.
- The charge radius of the pion, connected with the form factor, is the easiest case of an observable where these systematic effects enters and is thus well suited for a high precision benchmark of new techniques.

Vector form factor of the pion in the space-like regime

- Known from experiment with high precision.
- Relatively easy to extract from lattice simulations.
- Connected to the pion charge radius:

$$\left\langle r_{\pi}^{2}\right\rangle = 6 \left. \frac{d f_{\pi}(q^{2})}{dq^{2}} \right|_{q^{2}=0}$$

Vector form factor of the pion in the space-like regime: Experiment

Space-like regime with low q^2 : [NA7 collaboration, Nucl. Phys. B277 (1986)]

Vector form factor of the pion in the space-like regime: Lattice

Related to the matrix element of the vector current by:

$$\left\langle \pi^{+}(\mathbf{p}_{f})\left|V_{\mu}(q^{2})\right|\pi^{+}(\mathbf{p}_{i})
ight
angle =\left(p_{f}+p_{i}
ight)_{\mu}\;f_{\pi}(q^{2})$$

- no quark-disconnected diagrams contribute
- noise reduction techniques can be applied efficiently

[Foster, Michael (1999); Boyle et al (2008)]

- in principle only space-like momenta are available due to euclidean signature of spacetime (recently extended also to time-like momenta) [Meyer (2011)]
- \Rightarrow Allows for a high precision simulation!

Vector form factor of the pion in the space-like regime: Lattice – results

 r_0 : Sommer scale ($\approx 0.5 \text{ fm}$)

[Sommer (1994)]

Lattice regularisation

2. Lattice regularisation:

Form factors from the lattice

The lattice

- Euclidean spacetime discretized on a 4d hypercubic lattice.
- Expectation values of observable (fermions integrated out):

$$\langle O \rangle = \frac{1}{Z} \int d[U] O[U] \prod_{f} [\det(D_{f}[U])] \exp(-S[U])$$

Is measured on stochastically generated *representative* ensembles of gauge field configurations

- Physical results via an extrapolation to the continuum.
- Cost of the simulation growths when lowering the quark mass.
 An extrapolation to the physical point is needed in most cases.
- Problem: Momentum is usually introduced by Fourier transformation.
 - \Rightarrow Lower momentum cut-off due to finite volume!

Precision calculation of the pion electromagnetic form factor from lattice QCD \Box Lattice regularisation

Fourier momenta

solid line: Minimal q^2 from Fourier momenta

Precision calculation of the pion electromagnetic form factor from lattice QCD Lattice regularisation

Twisted boundary conditions

This problem can be cured by the use of partially twisted boundary conditions

[Bedaque (2004); Divitiis, Petronzio, Tantalo (2004)]

Change of the boundary conditions of the quark fields leads to a shift in the quark momenta:

$$p_i = rac{2\pi}{L} n_i + rac{ heta_i}{L}$$
 $heta_i$: twist angles

- Suitable tuning allows for arbitrarily small (space-like) momentum transfers.
 [Boyle et al (2007)]
- Additional finite volume effects are exponentially suppressed for matrix elements with at most one hadronic state in the initial and/or final state (like f_π, f_{ππ},...) [Sachrajda, Villadoro (2005)]

Precision calculation of the pion electromagnetic form factor from lattice QCD $\hfill \square \mathsf{Results}$

3. Results:

Form factor and charge radius

CLS ensembles - Lattice parameters

We use the ensembles generated within the CLS framework (CLS: Coordinated Lattice Simulations)

[https://twiki.cern.ch/twiki/bin/view/CLS/WebHome]

Discretisation: $N_f = 2$; non-perturbatively $\mathcal{O}(a)$ -improved Wilson

Algorithm: deflation accelerated DD-HMC [Lüscher (2004-2007)]

β	<i>a</i> [fm]	lattice	# masses	m_{π} L	Labels	Statistic
5.20	0.08	$64 imes 32^3$	3	6.0 - 4.0	A3 – A5	$\mathcal{O}(100)$
5.30	0.07	$64 imes 32^3$	2	6.2, 4.7	E4, E5	$\mathcal{O}(100)$
5.30	0.07	$96 imes 48^3$	1	5.0	F6	233
5.50	0.05	$96 imes 48^3$	3	7.7 – 5.3	N3 – N5	$\mathcal{O}(100)$

Lattice parameters:

Highest precision and lowest momenta ever attained!

Extraction of the charge radius

- High density of points close to q² = 0 allows the direct extraction of the slope using a linear fit.
 - \Rightarrow No scheme or model dependence!
- Can be checked against polynomial fits.
- Other crosschecks:
 - Vector pole dominance
 - χ Pt to NLO and NNLO

Precision calculation of the pion electromagnetic form factor from lattice QCD \Box_{Results}

Charge radius: q^2 dependence of linear fits

Solid line: $-(q r_0)^2 = 0.15$, maximum q^2 used for the linear fits

Precision calculation of the pion electromagnetic form factor from lattice QCD $\cap{LResults}$

Charge radius: chiral behavior

Precision calculation of the pion electromagnetic form factor from lattice QCD $\cap{LResults}$

Charge radius: chiral behavior

NLO χ Pt: Formulae γ Pt for $f_{\pi}(q^2)$: [Gasser, Leutwyler (1984); Bijnens, Colangelo, Talavera (1998)] $f_{\pi\pi}(q^2) = 1 + rac{m_\pi^2}{f^2} \left| rac{1}{6} \left(rac{q^2}{m^2} - 4 ight) ar{J} \left(rac{q^2}{m^2} ight) + rac{q^2}{m^2} \left(-\ell_6' - rac{1}{6} L \left(rac{m_\pi^2}{\mu^2} ight) - rac{1}{288\pi^2} ight) ight|$ with $\ell_6^r = -\frac{1}{96 \pi^2} \left[\bar{\ell}_6 + 16 \pi^2 L \left(\frac{m_\pi^2}{\mu^2} \right) \right]$ χ Pt for $\langle r_{\pi}^2 \rangle$: $\left\langle r_{\pi}^{2} \right\rangle = \frac{m_{\pi}^{2}}{f^{2}} \left(-6 \, \ell_{6}^{r} - L \left(\frac{m_{\pi}^{2}}{\mu^{2}} \right) - \frac{1}{16\pi^{2}} \right)$

- only free parameter: $\bar{\ell}_6$
- at the moment f_{π} fixed to experimental value
- renormalisation scale: $\mu = m_{\rho}$:

Precision calculation of the pion electromagnetic form factor from lattice QCD \Box_{Results}

NLO χ Pt: q^2 dependence of $\bar{\ell}_6$

Solid line: $-(q r_0)^2 = 0.15$, maximum q^2 used for the fits

Precision calculation of the pion electromagnetic form factor from lattice QCD $\cap{LResults}$

NLO χ Pt: pion mass dependence of $\bar{\ell}_6$

Precision calculation of the pion electromagnetic form factor from lattice QCD

Conclusions and outlook

4. Conclusions and outlook:

Conclusions

- State of the art lattice simulations of mesonic and baryonic form factors are still affected by systematic uncertainties.
- Improved simulation techniques are needed to compare lattice results and experiment to high precision to verify the conjectured agreement between the two.
- One interesting case is the charge radius of the pion that, despite other systematic effects, suffers from a model dependent extraction in almost all previous calculations.
- ▶ I presented our $N_f = 2$ study of the efficiency of novel techniques for the pion form factor and the extraction of the charge radius.
- Partially twisted boundary conditions are the main ingredient to reduce the model dependence in ⟨r²_π⟩, due to a large number of measurements at low q². (here we can even do better as experiment)

Outlook

- The accuracy of our data is good enough for lattice artefacts to become visible (eventually) and a more systematic analysis is under way.
- ▶ χPt to NLO does not work accurately as can be seen by the behavior of ℓ₆ with m²_π.
 - $\Rightarrow \quad \mbox{To perform the extrapolation to the physical point we are going to utilise χPt to NNLO.}$
- The chiral extrapolation will be assisted by additional measurements at smaller pion masses.
- In the end we aim at a model-independent result for the charge radius of the pion from first principles to compare to the experimental value.

Precision calculation of the pion electromagnetic form factor from lattice QCD

Thank you for your attention!