

J.H. Lee Brookhaven National Laboratory

Hadron 2011 Munich

Outline

- Why do we need
 - electron-ion collider
- What can we do with
 - e + (heavy) A
 - high energy/luminosity polarized e + polarized p
 - new opportunities for spectroscopy
- How can it be realized
 - adding an electron accelerator at RHIC (or adding a hadron accelerator at CEBAF)
 - design and status of eRHIC at BNL

QCD and Fundamental Structure of Matter

- QCD is THE theory of the strong interaction: Theory of the matter - quarks and gluons
- Hadronic constituent degree of freedom is governed by quarks, but gluons drive the baryonic structure (responsible for > 98% mass) and dominates the QCD vacuum structure
- "Mastering matter" requires the fundamental understanding of gluon dynamics beyond current knowledge: new frontier machine to deeply explore the regime where new degree of freedom emerges

Accessing gluonic structure

Hadron-Hadron

Probe interaction directly via gluons: Lacks the direct access to partonic kinematics

Lepton-Hadron (DIS)

Indirect access to gluons (electro(-weak) structure function) : High precision and access to partonic kinematics (x, Q²)

How gluons grow

- Linear DGLAP evolution: requires "safety dynamics" to prevent unitarity violation
- Saturation regime arises naturally through non-linear BK/JIMWLK evolution
 - in the Color Glass Condensate (CGC) framework
 - characterized by saturation momentum $Q_s(x, A)$
 - Experimental establishment on the "theoretical evidence" of saturation regime is fundamentally important for understanding of gluonic dynamics
 - strong interaction

Estimating saturation scale

- Gluonic saturation/recombination
 - number of gluons per unit of transverse area: $\rho \sim xG(x,Q^2)/\pi R^2$
 - cross-section for gluon recombination: $\sigma \sim \alpha_s/Q^2$
 - saturation occurs when $I < \rho \sigma \Rightarrow Q^2 < Q_s^2(x)$
- saturation Qs varies
 - Qs $\propto x^{1/3}$ (phenomenological "geometrical scaling" at HERA)
 - Qs $\propto A^{1/3}$ (Gluons act coherently)
 - Nuclear enhanced saturation scale
 - To access saturation: increase energy (~I/x) or increase Q_s (~A^{1/3})

Nuclear enhanced saturation

- With e+p, requiring Q² lever arm need $\sqrt{s} = 1-2$ TeV (HERA $\sqrt{s} = 320$ GeV)
- x~10⁻³ in dAu at RHIC (approaching saturation)
- Saturation scale Qs increases with heavy-ion significantly: Well in reach with e+Au at RHIC

Presbirg Sated value of perfacilities

- HERA (ep) energy range higher, but G(x,Q²) in the very limited reach of the saturation regime
- eRHIC (eA) will probe deeply into the saturation region

Two Concepts to Realize an Electron-Ion Collider (EIC)eRHIC = RHIC +ELIC = CEBAF +Electron Ring (ERL)Hadron Ring

Both designs in 2 stages <image>

Stage I: 5+100 GeV/n e+Au (\sqrt{s} =45 GeV/n) Stage II: 30+130 GeV/n e+Au (\sqrt{s} =125 GeV/n) Stage I: I I+40 GeV/n e+Au (\sqrt{s} =42 GeV/n) Stage II: 20+100 GeV/n e+Au (\sqrt{s} =89 GeV/n)

eRHIC Design Under Active Consideration

Current design allows for:

- more IP's
- reusing infrastructure + detector components for STAR, PHENIX
- easier upgrade path from 5 GeV eRHIC-I
- minimal environmental impact concerns
- IR design to reach 10³⁴ luminosity

eRHIC: The complete QCD factory

- Versatile $e^{\uparrow}+A$, $e^{\uparrow}+p^{\uparrow}$, $p^{\uparrow}+p$, $^{\uparrow}A+A$ (up to U)
- High luminosity: \mathcal{L} (e+p) = 1.5×10³⁴ cm⁻²s⁻¹ (HERA \mathcal{L} =5×10³¹)
- Electron Accelerator
 - Unpolarized and polarized (80%) e⁻,e⁺ 5-30 GeV
- RHIC
 - Unpolarized and polarized (70%) protons 50 250 (325) GeV
 - Light Ions (d, Si, Cu), Heavy Ions (Au,U) 50-100 (130) GeV/u
 - Polarized light ions (He³) 215 GeV/u

Key measurements for characterizing glue in matter in high energy electron-lon collisions

- Precisely mapping momentum and space-time distribution of gluons in nuclei in wide kinematic range including saturation regime through:
 - Inclusive measurements of structure functions (F_2 , F_L): $eA \rightarrow eX$, $eA \rightarrow eX+gap$
 - Semi-inclusive and correlation measurements of final state distributions: $eA \rightarrow e\{\pi, K, \Phi, D, J/\Psi...\}X$
 - Exclusive final states: $eA \rightarrow e\{\rho, \Phi, J/\Psi, \gamma\}A$
- Multiple controls: x, Q², t, M_X^2 for light and heavy nuclei

$$\frac{d^2\sigma^{ep} \rightarrow \mathbf{E}_{\mathbf{x}} am \mathbf{p} \mathbf{k}_{e.m}^2}{dx dQ^2} = \mathbf{G}_{\mathbf{k}} \mathbf{f}_{\mathbf{k}} \mathbf{f}_$$

eRHIC: 10 GeV + 100 GeV/n - estimate for 10 fb⁻¹

Example of the key measurements: Imbalance in di-hadron correlations

• Suppression of away side peak and increase of width (decorrelation at $\Delta \Phi = \pi$) at large Q² in eA due to multiple interactions between partons and dense nuclear matter in the CGC frame work

Example of the key measurements: Characterizing saturation regime through exclusive diffractive vector

• $eA \rightarrow e\{\rho, \Phi, J/\Psi, \gamma\}A$

Novel "strong" probe to investigate gluonic structure of nuclei: color dipole coherent and incoherent diffractive interaction: Sensitive to saturation (\sqrt{s} ,b,A)

Access to spatial distribution of gluons

polarized e + p at eRHIC: Spin and 3d imaging of nucleon

Important Extension of Nucleon
Structure Studies at HERA, RHIC, JLab,...
● DIS, photon-gluon fusion ⇒

Probing gluon spin ΔG at small-x (x > few × 10⁻⁴)

- SIDIS \Rightarrow Flavor decomposition of sea in broad x range
- DIS at High $Q^2 \Rightarrow$ Electroweak probes of proton spin structure
- Polarized DVCS, exclusive reactions + Lattice QCD \Rightarrow GPD's \Rightarrow map low-x transverse position-dependent

Summary

The new proposed versatile and high-luminosity electron-lon collider (eRHIC) is to study one of the outstanding fundamental questions in QCD:

- Establish and explore new degree of freedom of gluonic property of matter - saturation regime by systematically studying the unprecedentedly accessed kinematic regime.
- Deeply extend the current understanding of nucleon structure: spin and 3d landscape.

eRHIC: New Opportunities also for Hadron Spectroscopy

- High luminosity (~5 fb⁻¹/year)
- Detector and machine designs to accommodate from exclusive photo-production to semiinclusive DIS over a wide kinematic range with excellent particle reconstruction and PID
- Broad range of reactions and energies with polarization
- Spectroscopy programs being developed: searches for Exotics, heavy quark spectroscopy...

Thank you

Thank you

Back-up slides

eA Science Matrix

Primary new science deliverables	What we hope to fundamentally learn	Basic measurements	Typical required precision	Special requirements on accelerator/ detector	What can be done in phase I	Alternatives in absence of an EIC	Gain/Loss compared with other relevant facilities	Comments
integrated nuclear gluon distribution	The nuclear wave function throughout x-Q ² plane	FL, F2, FL ^c , F2 ^c	What HERA reached for F2 with combined data	displaced vertex detector for charm	stage 1: large- x & large-Q ² need full EIC, for F _L and F ₂ ^c	p+A at LHC (not as precise though) & LHeC	First experiment with good x, Q ² & A range	This is fundamental input for A+A collisions
k _T dependence of gluon distribution and correlations	The non- linear QCD evolution - Qs	SIDIS & di- hadron correlations with light and heavy flavours		Need low-pt particle ID	SIDIS for sure TBD: saturation signal in di- hadron p _T imbalance	 I) p+A at RHIC/LHC, although e+A needed to check universality 2) LHeC 	Cleaner than p+A: reduced background	
b dependence of gluon distribution and correlations	Interplay between small-x evolution and confinement	Diffractive VM production and DVCS, coherent and incoherent parts	50 MeV resolution on momentum transfer	hermetic detector with 4pi coverage low-t: need to detect nuclear break-up	Moderate x with light and heavy nuclei	LHeC	Never been measured before	Initial conditions for HI collisions – eccentricity fluctuations

From Fall 2010 INT Workshop

ep Spin Physics Matrix

Science Deliverable	Basic Measurement	Uniqueness and Feasibility	Requirements
spin structure at small x contribution of Δg, ΔΣ to spin sum rule	inclusive DIS	•	minimal large x,Q² coverage about 10fb ⁻¹
full flavor separation in large x,Q ² range strangeness, s(x)-s(x)	semi-inclusive DIS	•	very similar to DIS particle ID improved FFs (Belle,LHC)
electroweak probes of proton structure flavor separation electroweak parameters	inclusive DIS at high Q²	some unp. results from HERA	20x250 to 30x325 positron beam polarized ³ He beam
treatment of heavy flavors in pQCD	DIS (g ₁ , F ₂ , and F _L) with tagged charm	some results from HERA	large x,Q² coverage charm tag
(un)polarized γ PDFs relevant for γγ physics at an ILC	photoproduction of inclusive hadrons, charm, jets	unp. not completely unknown	tag low Q² events about 10 fb ⁻¹

- Multiple scattering in the dense nucleus at forward in dAu lead to mono-jet (decorrelation at $\Delta \Phi = \pi$) in CGC frame work (J.Albacete and C. Marquet, to appear in PRL 2010)
- Estimated $x_A \sim 10^{-3}$

Implication understanding initial dynamics at RHIC

- Shattering CGC sheets provides the initial conditions for QGP evolution: "Glasma"
- Considerable success describing
 - Rapid thermalization
 - Long range rapidity correlation (ridge at RHIC and CMS)