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Outline
• Why do we need

• electron-ion collider  

• What can we do with

• e + (heavy) A 

• high energy/luminosity polarized e + polarized p

• new opportunities for spectroscopy 

• How can it be realized

• adding an electron accelerator at RHIC (or          
adding a hadron accelerator at CEBAF) 

• design and status of eRHIC at BNL
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QCD and Fundamental 
Structure of Matter

• QCD is THE theory of the strong interaction:          
Theory of the matter - quarks and gluons

• Hadronic constituent degree of freedom is governed by 
quarks, but gluons drive the baryonic structure 
(responsible for > 98% mass) and dominates the QCD 
vacuum structure

• “Mastering matter” requires the fundamental 
understanding of gluon dynamics beyond current 
knowledge: new frontier machine to deeply explore the 
regime where new degree of freedom emerges
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 Accessing gluonic structure 
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Probe interaction directly 
via gluons:
Lacks the direct access to 
partonic kinematics 

Indirect access to gluons 
(electro(-weak) structure 
function) :
High precision and 
access to partonic 
kinematics (x, Q2)

Hadron-Hadron Lepton-Hadron (DIS)



Glue in Matter: What do we know

How to Measure Glue ?

Scaling violation: dF2/dlnQ2 and 

linear DGLAP Evolution ! G(x,Q2)
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• For smaller values of x, structure function F2 rises 
strongly with Q2:  Simple quark-parton model  Bjorken 
scaling breaks

• NLO QCD and the measurement “broadly similar”: 
limited success 

• Gluons dominate at low-x, but the underlying 
dynamics and the evolution is not well established



How gluons grow

• Linear DGLAP evolution: requires  “safety dynamics” to prevent unitarity 
violation  

• Saturation regime arises naturally through non-linear BK/JIMWLK evolution

• in the Color Glass Condensate (CGC) framework

• characterized by saturation momentum QS(x,A)

• Experimental establishment on the “theoretical evidence” of saturation 
regime is fundamentally important for understanding of gluonic dynamics 
- strong interaction 
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Non-Linear QCD - Saturation

• BFKL Evolution in x
– linear
– explosion of color field?

• New: BK/JIMWLK 
    based models 

– introduce non-linear effects 

! saturation

– characterized by a scale 
Qs(x,A) 

– arises naturally in the Color 
Glass Condensate (CGC) 
framework

proton

N partons any 2 partons can recombine into one

Regimes of QCD Wave Function

Monday, February 8, 2010

Gluon Density

H
1 
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ol

la
bo

ra
tio

n

H1
MRST 02 vs CTEQ 6

More work needed; MS– vs scheme-invariant evolution.

FL(x, Q2) could be decisive.

J. Blümlein RECAPP, Allahabad February 2009 – p.35

?
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Estimating saturation scale
• Gluonic saturation/recombination 

• number of gluons per unit of                                                    
transverse area:    ρ~xG(x,Q2)/πR2

• cross-section for gluon recombination:                                                               
σ~ αs/Q2

• saturation occurs when                                                                        
1 < ρσ ⇒  Q2 < Qs2(x) 

• saturation Qs varies 

• Qs ∝ x1/3 (phenomenological “geometrical scaling” at HERA)

• Qs ∝ A1/3 (Gluons act coherently)

• Nuclear enhanced saturation scale

• To access saturation: increase energy (~1/x) or increase Qs (~A1/3)  

7



Nuclear enhanced saturation
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~x500

~x7

• With e+p, requiring Q2 
lever arm need √s =1-2 
TeV (HERA √s=320 GeV)

• x~10-3 in dAu at RHIC 
(approaching saturation)

• Saturation scale Qs 
increases with heavy-ion 
significantly:  Well in reach 
with e+Au at RHIC



Probing Saturation regime

• HERA (ep) energy range higher, but G(x,Q2) in the very 
limited reach of the saturation regime   

• eRHIC (eA) will probe deeply into the saturation region 
13

Reach compared with previous facilities 

Staged option: begins to reach into the saturation regime for heavy nuclei

Experience with nuclei have shown that we need to reach deeply into a new 
regime for assurance that the new regime has been reached

And, we need a safety margin (models can and have been wrong before)

9

e+p e+A



Two Concepts to Realize an Electron-Ion Collider (EIC)
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eRHIC = RHIC + 
Electron Ring (ERL)

ELIC = CEBAF + 
Hadron Ring

Stage 1: 5+100 GeV/n e+Au     
(√s=45 GeV/n)
Stage II: 30+130 GeV/n e+Au 
(√s=125 GeV/n)

Stage I: 11+40 GeV/n e+Au  
(√s=42 GeV/n)
Stage II: 20+100 GeV/n e+Au 
(√s=89 GeV/n)

Both 
designs in 
2 stages



Current design allows for:
• more IP’s

• reusing infrastructure + detector components 
for STAR, PHENIX

• easier upgrade path from 5 GeV eRHIC-I

• minimal environmental impact concerns

• IR design to reach 1034 luminosity

eRHIC Design Under Active Consideration

RHIC: 325 GeV p or 
130 GeV/u Au with DX 

magnets removed
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• All in-tunnel approach uses 
two energy recovery linacs 
and 6 recirculation passes to 
accelerate the electron beam
• Staging: the electron energy 
will be increased in stages: 5-30 
GeV by increasing the linac 
length



eRHIC: 
The complete QCD factory 

• Versatile e↑+A, e↑+p↑, p↑+p,↑ A+A (up to U)

• High luminosity: L (e+p) = 1.5x1034 cm-2s-1 (HERA L =5x1031)

• Electron Accelerator

• Unpolarized and polarized (80%) e-,e+ 5-30 GeV

• RHIC

• Unpolarized and polarized (70%) protons 50 - 250 (325) 
GeV

• Light Ions (d, Si, Cu), Heavy Ions (Au,U) 50-100 (130) GeV/u

• Polarized light ions (He3)  215 GeV/u

12



Key measurements for characterizing glue in 
matter in high energy electron-Ion collisions

• Precisely mapping momentum and space-time 
distribution of gluons in nuclei in wide kinematic range 
including saturation regime through:

• Inclusive measurements of structure functions 
(F2,FL):        eA→eX, eA→eX+gap

• Semi-inclusive and correlation measurements of final 
state distributions: eA→e{π,K,Φ,D,J/Ψ...}X

• Exclusive final states: eA→e{ρ,Φ,J/Ψ,γ}A

• Multiple controls: x, Q2, t, MX
2 for light and heavy nuclei

13



eRHIC: 10 GeV + 100 GeV/n - estimate for 10 fb-1

Example of the key measurements:
Gluon distribution from FL 

Example of Key Measurement: FL
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HKM and FGS are 
"standard" shadowing 
parameterizations that are 
evolved with DGLAP

FL ~ !s G(x,Q2)

requires "s scan, Q2/xs = y

Here: 

#Ldt = 4/A fb-1  (10+100) GeV

    = 4/A fb-1  (10+50) GeV
    = 2/A fb-1  (5+50) GeV

statistical error only

Syst. studies of FL(A,x,Q2): 
• G(x,Q2) with great precision 
• Distinguish between models
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• FL ~ αSG(x,Q2)

• Systematic studies of FL

(A,x,Q2)

• G(x,Q2) with great 
precision

• Distinguish between 
models 

• Utilize wide range of √s 
of eRHIC
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Example of the key measurements: 
Imbalance in di-hadron correlations

15

Di-hadron correlations in e+A 

Dominguez, Xiao and Yuan (2010) 
at small x, multi-gluon distributions 
are as important as single-gluon 
distributions, they contribute to 

such di-hadron correlations 

never been measured, we expect to see the same effect in e+A vs e+p 

Q2 = 4 GeV22 < pT1 < 3 GeV
1 < pT2 < 2 GeV

•   Suppression of away side peak and increase of width 
(decorrelation at ΔΦ=π) at large Q2 in eA due to 
multiple interactions between partons and dense nuclear 
matter in the CGC frame work

Q2 q

q

e

A

jet-­1

jet-­2
p

Au

Au x 18.5



Example of the key measurements:   
Characterizing saturation regime through exclusive diffractive vector Diffraction in eA

Two possibilities for the diffractive events in nuclei:

Coherent
No-breakup

Incoherent
With breakup into nucleons

The gap is still there

gap
gap

A A
A A’

p
n

e
e e

e

coherent in-coherent
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• eA→e{ρ,Φ,J/Ψ,γ}A

• Novel “strong” probe to 
investigate gluonic 
structure of nuclei: color 
dipole coherent and 
incoherent diffractive 
interaction: Sensitive to 
saturation (√s,b,A)

• Access to spatial 
distribution of gluons



x < x ~ x ~ 

Proton 
tomography via 

exclusive 
reactions

polarized e + p at eRHIC:
Spin and 3d imaging of nucleon

•  DIS,  photon-gluon fusion ⇒                         

Probing gluon spin ΔG at small-x (x > few × 10−4)

•  SIDIS ⇒ Flavor decomposition of sea in broad x 

range

•  DIS at High Q2 ⇒ Electroweak probes of proton 

spin structure

•  Polarized DVCS, exclusive reactions + Lattice QCD 
⇒ GPD’s ⇒ map low-x transverse position-dependent  

PDF’s

Important Extension of Nucleon 
Structure Studies at HERA, RHIC, JLab,…
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Summary 
The new proposed versatile and high-luminosity 
electron-Ion collider (eRHIC) is to study one of 
the outstanding fundamental questions in QCD: 

• Establish and explore new degree of freedom of 
gluonic property of matter - saturation regime by 
systematically studying the unprecedentedly 
accessed kinematic regime.  

• Deeply extend the current understanding of 
nucleon structure: spin and 3d landscape.
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eRHIC: New Opportunities also for 
Hadron Spectroscopy 

• High luminosity (~5 fb-1/year)

• Detector and machine designs to accommodate 
from exclusive photo-production to semi-
inclusive DIS over a wide kinematic range with 
excellent particle reconstruction and PID

• Broad range of reactions and energies with 
polarization

• Spectroscopy programs being developed: 
searches for Exotics, heavy quark spectroscopy... 

• Join us...
19
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Back-up slides
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From Fall 2010 INT Workshop 

eA Science Matrix
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ep Spin Physics Matrix
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Science
Deliverable

Basic
Measurement

Uniqueness	
  
and	
  

Feasibility
Requirements

spin	
  structure	
  at	
  small	
  x

contribution	
  of	
  Δg,	
  	
  ΔΣ
to	
  spin	
  sum	
  rule

inclusive	
  DIS ✔
minimal	
  

large	
  x,Q2	
  coverage
about	
  10C-­‐1

full	
  flavor	
  separation
in	
  large	
  x,Q2	
  range

strangeness,	
  s(x)-­‐s(x)
semi-­‐inclusive	
  DIS ✔

very	
  similar	
  to	
  DIS
particle	
  ID

improved	
  FFs	
  (Belle,LHC)

	
  electroweak	
  probes
of	
  proton	
  structure
flavor	
  separation

electroweak	
  parameters

inclusive	
  DIS	
  
at	
  high	
  Q2

✔
some	
  unp.	
  results	
  from	
  HERA

20x250	
  to	
  30x325
positron	
  beam

polarized	
  3He	
  beam

treatment	
  of
heavy	
  flavors	
  

in	
  pQCD	
  

DIS	
  (g1,	
  F2,	
  and	
  FL)
with	
  tagged	
  charm

✔
some	
  results	
  from	
  HERA

large	
  x,Q2	
  coverage
charm	
  tag

(un)polarized	
  γ	
  PDFs

relevant	
  for	
  γγ	
  physics
at	
  an	
  ILC

photoproduction
of	
  inclusive

hadrons,	
  charm,	
  jets

✔
unp. not completely unknown

tag	
  low	
  Q2	
  events
about	
  10	
  C-­‐1



Saturation at RHIC

• Multiple scattering in the dense nucleus at forward in dAu 
lead to mono-jet (decorrelation at ΔΦ=π) in CGC frame 
work  ( J. Albacete and C. Marquet, to appear in PRL 2010)

• Estimated xA ~ 10-3 
24
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Low gluon density (pp):
pQCD predicts 2!2 process 
! back-to-back di-jet

beam view

q q-jet

g-jet

g

side view

High gluon density (pA):
2!1 (2!many) process ! mono-jet

pT balanced by 
many gluons

Mono-jet beam view

Hints from RHIC: Saturation at x=10-3?
Disappearance of angular correlations in Run 8 dAu data at 
forward rapidities (log x ~ 2.5 - 3)
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Quantum fluctuations
and hydro behavior
Plain CGC calculation
Unstable fluctuations
Toy model of fluctuations

Summary
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Forward azimuthal correlations in dAu

Azimuthal correlations in dAu collisions at NLO

p

q

x

y

• Multiple scatterings in the nucleus (dense at forward η)
lead to a decorrelation at ∆φ = π

The strength of the rescatterings depends on Qs: it is
larger at forward η and for central collisions

• Since the collinear parton fragmentation happens outside,
it is unaffected by the dense nucleus
! the peak at ∆φ = 0 is not modified
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Summary
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Forward azimuthal correlations in dAu

Azimuthal correlations in pp collisions at NLO

p

q

x

y

• Collinear factorization ! the transverse momenta taken
to the projectiles are soft

!p⊥ + !q⊥ = !0

• At NLO, one of the final state partons can fragment
! appearance of a correlation at ∆φ = 0 and slight
broadening of the correlation at ∆φ = π



Implication on understanding initial 
dynamics at RHIC

• Shattering CGC sheets provides the initial conditions for 
QGP evolution: “Glasma”

• Considerable success describing 

• Rapid thermalization

• Long range rapidity correlation (ridge at RHIC and 
CMS)

25
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Stages of a nucleus-nucleus collision

z 

t

strong fields classical dynamics

gluons & quarks out of eq. viscous hydro

gluons & quarks in eq. ideal hydro

hadrons kinetic theory

freeze out

• The Color Glass Condensate provides a framework to
describe nucleus-nucleus collisions up to a time τ ∼ Q−1

s

Glasma

11

Definition: 

    Non-equilibrium state between Color Glass Condensate and Quark Gluon 
    Plasma which is created in high-energy heavy-ion collisions.

Expanding Flux Tubes

1/Qs

E or B, or  E&B 

Boost invariant Glasma (without rapidity 
dependence) cannot thermalize 
Need to violate the boost invariance !!!

! origin:  fluctuation

Considerable success 

describing:

1) rapid thermalization

2) Long-range rapidity 

correlations (ridge)

3) Baryon stopping
see talk by F. Gelis


