

Probing cold nuclear matter with virtual photons

Outline:

- Virtual photons in cold nuclear matter
- HADES
- Slow and fast e⁺e⁻ pairs
- Nuclear modification factor
- Conclusion

<u>Michael Weber</u>, Manuel Lorenz, Anar Rustamov and Pavel Tlusty for the HADES collaboration

Virtual photons in cold nuclear matter

- EM structure / Vector mesons in matter
- Decay in e⁺e⁻:
 - Weak interactions with surrounding medium
 - Other sources (conversion, Dalitz decays)
- Experiments:
 - Shape measurements (spectral function)
 - Absorption (total width)
- Results (Spring8, KEK E328, JLab CLAS, CB/TAPS@ELSA, ANKE)
 - Broadening
 - Pole mass shift?
 - Difficult interpretation (Differences in Background determination,

ho contribution, decay kinematics, ...)

HADES@GSI

<u>Data sets:</u> protons with E_{kin} = 3.5 GeV

- pNb (cold nuclear matter)
- pp (reference)

Observable	Detector
р	MDC (Magnet)
β	TOF(ino)
dE/dx	MDC
	TOF(ino)
e⁺/e⁻	RICH
	Pre-Shower

HADES@GSI

<u>Data sets:</u> protons with E_{kin} = 3.5 GeV

- pNb (cold nuclear matter)
- pp (reference)

See also:

- "In-medium modification of hadrons", Piotr Salabura
- "Neutral kaon production in pp and pNb collisions", Kirill Lapidus

e⁺e⁻ Invariant Mass

- Signal = all e⁺e⁻ pairs same event Like Sign CB
- S/B ~ 10 in vector meson mass region
- Mass resolution: σ_{ω} ~15 MeV/c²
- 2 independent PID: Hard Cuts and Multi Variate Analysis

```
HADRON 2011 - 17.06.11
```

Reference: pp ($E_{kin} = 3.5 \text{ GeV}$)

Cold nuclear matter: pNb (E_{kin} = 3.5 GeV)

- Normalization:
 - pp: elastic collisions
 - pNb: negative pion yield
- Pion scale with ~ A^{0.7}
 - Expected for surface production
- Shape analysis:
 - Relative to π^0 yield
- Nuclear modification factor

Comparison: pNb vs. pp

- Shape analysis
- Scaled with the number of π^0
- Different production and/or absorption processes dominant for different e⁺e⁻ sources

Pair momenta

• Enrich in-medium decays of vector mesons

Pair momenta

- Enrich in-medium decays of vector mesons
- HADES: Significant e^+e^- yield with $p_{ee} < 800 \text{ MeV/c}$ (~ 35 % in VM mass region)

Slow and fast pairs

- High p: free p+p production
- Low p: overshoot over p+p different for ρ , ω , and ϕ

Nuclear modification factor

$$R_{pA} = \frac{A_{part}^{pp} \cdot dN / dp^{pNb}}{A_{part}^{pNb} \cdot dN / dp^{pp}}$$
$$= \frac{A_{part}^{pp} \cdot \sigma_{reaction(pp)} \cdot d\sigma / dp^{pNb}}{A_{part}^{pNb} \cdot \sigma_{reaction(pNb)} \cdot d\sigma / dp^{pp}}$$

$$\frac{\sigma_{reaction(pNb)}}{\sigma_{reaction(pp)}} = 20, 5 = (A)^{0.67}$$

$$R_{pA} = 1$$
: No In-Medium effects
 $R_{pA} > 1$: Excess
 $R_{pA} < 1$: Suppression

Nuclear modification factor

Transport model calculations

J. Weil, GIBUU [http://arxiv.org/abs/1106.1344]

Transport model calculations

R_{pNb} vs. momentum (in four mass bins)

Transport model calculations

Conclusion

- Relative yield $\ln \pi^0 / \omega$ region ~ 1.0 Other sources ~ 1.5
- Fast and slow pairs

High p: p+Nb = p+p Low p: excess (secondary reactions) ω absorption?

• Nuclear modification factor

High p: $R_{pNb} = 0.8 - 0.9$ Low p: $R_{pNb} = 0.8 - 2.5$

- Have to understand production mechanisms in primary and secondary reactions:
 - Transport models
 - $-\pi$ beam experiments

BACKUP

Transverse momenta

Rapidities

Isospin dependence

- Dielectron cross sections in p +p and p+d at beam energies from 1.04 to 4.88 GeV measured with DLS
- Decreasing mass dependence of pd/pp with increasing beam energy
- pd cross section becomes approximately twice the pp cross section at all masses with increasing beam energy

W.K.Wilson et al., PRC 57 (1997) 1865

Transparency ratio ?

 $\gamma + \mathbf{A} \rightarrow \omega/\rho + \mathbf{X}$

Low interaction probability \rightarrow Production in whole volume $\rightarrow \sim A^{\alpha}, \alpha = 1$

$T_A \rightarrow$ absorption in nucleus \rightarrow in medium width

 $\mathbf{p} + \mathbf{A} \rightarrow \omega/\rho + \mathbf{X}$

Strong interaction \rightarrow Production on surface $\rightarrow \sim A^{\alpha}, \alpha = 2/3$ BUT: secondary proction via pions $\rightarrow \sim A^{\alpha}, \alpha > 2/3$

 $T_A \rightarrow$ disentanglement of production and absorption \rightarrow Model dependence