n	۰	٣		\sim		0	\sim	n
	ι		υ	u	u	C,	U	

Review of $SU(3)_F$ Sector

Extension to Heavy Baryons

Results

Conclusions

Effective Q-Q Interactions in Heavy Baryons

J. Day, K.-S. Choi, and W. Plessas

Karl-Franzens-Universität Graz

Hadron 2011 Munich, Germany June 17, 2011

Introduction	Review of <i>SU</i> (3) _F Sector	Extension to Heavy Baryons	Results 0000	Conclusions
Outline				

1 Introduction

- Review of SU(3)_F Sector
 - Relativistic Constituent Quark Model
 - Goldstone Boson Exchange Model
- 3 Extension to Heavy Baryons
 - What is the Correct Q-Q Interaction?
 - A Universal Baryon Model

4 Results

- Light Baryons
- Heavy Baryons

Introduction	Review of <i>SU</i> (3) _F Sector	Extension to Heavy Baryons	Results 0000	Conclusions

Introduction

What has been learned

- For light baryons the relativistic constituent quark model provides an efficient and intuitive tool.
- Describes both spectroscopy and electroweak structures (at least for baryon ground states).

See, e.g.,

W. Plessas: PoS(LC2010)017

K.-S. Choi: PhD Thesis, University of Graz, 2011

In	тr	'n	а		C,	n	n
		0	u	u	v	v	

Review of $SU(3)_F$ Sector

Extension to Heavy Baryons

Results

Conclusions

Relativistic Constituent Quark Model

Formalism of Poincaré-Invariant QM

Relativistic quantum mechanics (RQM)

i.e. quantum theory respecting Poincaré invariance

(theory on a Hilbert space ${\cal H}$ corresponding to a finite number of particles, not a field theory)

Invariant mass operator

$$\hat{M} = \hat{M}_{free} + \hat{M}_{int}$$

Eigenvalue equations

$$egin{aligned} \hat{M} \ket{P,J,\Sigma} &= M \ket{P,J,\Sigma} \ , & \hat{M}^2 = \hat{P}^\mu \hat{P}_\mu \ \hat{P}^\mu \ket{P,J,\Sigma} &= P^\mu \ket{P,J,\Sigma} \ , & \hat{P}^\mu = \hat{M} \hat{V}^\mu \end{aligned}$$

Introduction	Review of $SU(3)_F$ Sector	Extension to Heavy Baryons	Results 0000	Conclusions
Relativistic Constituer	nt Quark Model			

Relativistic Constituent Quark Model (RCQM)

Interacting mass operator

$$\hat{M} = \hat{M}_{free} + \hat{M}_{int}$$

$$\hat{M}_{free} = \sqrt{\hat{H}_0^2 - \hat{\vec{P}}_{free}^2}$$

$$\hat{M}_{int} = \sum_{i < j}^3 \hat{V}_{ij} = \sum_{i < j} [\hat{V}_{ij}^{conf} + \hat{V}_{ij}^{hf}]$$

fulfilling the Poincaré algebra

$$\begin{split} & [\hat{P}_i, \hat{P}_j] = 0, \qquad [\hat{J}_i, \hat{H}] = 0, \qquad [\hat{P}_i, \hat{H}] = 0, \\ & [\hat{K}_i, \hat{H}] = -i\hat{P}_i \qquad [\hat{J}_i, \hat{J}_j] = i\epsilon_{ijk}\hat{J}_k \qquad [\hat{J}_i, \hat{K}_j] = i\epsilon_{ijk}\hat{K}_k, \\ & [\hat{J}_i, \hat{P}_j] = i\epsilon_{ijk}\hat{P}_k, \qquad [\hat{K}_i, \hat{K}_j] = -i\epsilon_{ijk}\hat{J}_k, \qquad [\hat{K}_i, \hat{P}_j] = -i\delta_{ij}\hat{H} \end{split}$$

 $\hat{H}, \hat{P}_i \dots$ time and space translations, $\hat{J}_i \dots$ rotations, $\hat{K}_i \dots$ Lorentz boosts

Introduction	Review of <i>SU</i> (3) _F Sector	Extension to Heavy Baryons	Results	Conclusions					
Goldstone Boson Exchange Model									
Q-Q Inter	action								

Confinement

 Generally assumed as linearly rising potential, as following from lattice QCD.

What is the hyperfine interaction

- Phenomenology: It cannot be only one-gluon exchange
- Flavor independent potentials cannot produce correct level orderings, particularly in the N and Λ spectra.

Introduction	Review of <i>SU</i> (3) _F Sector ○○○●○○○	Extension to Heavy Baryons	Results 0000	Conclusions
Goldstone Boson	Exchange Model			
Low-Ene	rgy QCD			

Goldstone Bosons

- $SU(3)_L \times SU(3)_R \rightarrow SU(3)_V$
- Spontaneous breaking of chiral symmetry $(SB_{\chi}S)$
- Generation of $3^2 1 = 8$ Goldstone bosons
- U(1)_A creates the ninth by explicit symmetry breaking

Constituent Quarks

 Constituent quarks appear as quasiparticles with dynamical mass

Effective Lagrangian

$$L\sim igar{\psi}\gamma_5ec{\lambda}^{ extsf{F}}\cdotec{\phi}\psi$$

(1)

Introduction	Review of <i>SU</i> (3) _F Sector	Extension to Heavy Baryons	Results 0000	Conclusions
Goldstone Boson	Exchange Model			
SU(3) = 0	BE Model			

Hyperfine Interaction (spin-spin part only)

$$V_{\rm hf} = V_{\chi}^{\rm octet} + V^{\rm singlet}$$
 (2)

$$V_{\rm hf} = \left[V_{\pi} \sum_{a=1}^{3} \lambda_i^a \lambda_j^a + V_{\mathcal{K}} \sum_{a=4}^{7} \lambda_i^a \lambda_j^a + V_{\eta} \lambda_i^8 \lambda_j^8 + V_{\eta'} \lambda_i^0 \lambda_j^0 \right] \vec{\sigma}_i \cdot \vec{\sigma}_j$$
(3)

Regularized Goldstone-Boson Exchange

$$V_{\gamma}(r_{ij}) = \frac{g_{\gamma}^2}{2\pi} \frac{1}{12m_i m_j} \left[\mu_{\gamma}^2 \frac{e^{-\mu_{\gamma} r_{ij}}}{r_{ij}} - \Lambda_{\gamma}^2 \frac{e^{-\Lambda_{\gamma} r_{ij}}}{r_{ij}} \right]$$
(4)
$$\gamma = \pi, \mathcal{K}, \eta, \eta'$$

Introduction	Review of SU(3) _F Sector	Extension to Heavy Baryons	Results	Conclusions					
Goldstone Boson Exchange Model									
Ν, Δ, Λ S	pectra								

Introduction	Review of SU(3) _F Sector ○○○○○●	Extension to Heavy Baryons	Results	Conclusions				
Goldstone Boson Exchange Model								
Σ, Ξ, Ω S	pectra							

Introduction	Review of SU(3) _F Sector	Extension to Heavy Baryons	Results 0000	Conclusions
What is the Corre	ct Q-Q Interaction?			
Open Pro	blem			

Q: For heavy baryons, is GBE still present or is one-gluon exchange better suited?

A: Let us see!

Introduction	Review of SU(3) _F Sector	Extension to Heavy Baryons o●ooooooo	Results 0000	Conclusions					
What is the Correct Q-Q Interaction?									
Baryons of	[•] <i>SU</i> (5) _F								

One has to know Q-Q interactions

- Light-Light
- Light-Heavy
- Heavy-Heavy

How should they be modeled?

Introduction	Review of SU(3) _F Sector	Extension to Heavy Baryons	Results	Conclusions
		000000000		

What is the Correct Q-Q Interaction?

Comparison in Charm Spectra

Introduction	Review of SU(3) _F Sector	Extension to Heavy Baryons oooooooooo	Results 0000	Conclusions

What is the Correct Q-Q Interaction?

Comparison in Bottom Spectra

Introduction	Review of <i>SU</i> (3) _F Sector	Extension to Heavy Baryons oooooooooo	Results 0000	Conclusions		
What is the Correct Q-Q Interaction?						
More Experimental Data is Needed!						

- Preliminary investigation appears to show that both the GBE and Hybrid models work well. More experimental data is necessary.

- What must we now consider when creating a full $SU(5)_F$ GBE potential?

Introduction	Review of SU(3) _F Sector	Extension to Heavy Baryons	Results	Conclusions
A Universal Bary	on Model			
$SU(5)_F$ F	Potential Model			

$$V_{\chi} = \left[V_{\pi} \sum_{a=1}^{3} \lambda_{i}^{a} \lambda_{j}^{a} + V_{K} \sum_{a=4}^{7} \lambda_{i}^{a} \lambda_{j}^{a} + V_{\eta} \lambda_{i}^{8} \lambda_{j}^{8} + \frac{2}{5} V_{\eta'} + V_{D} \sum_{a=9}^{12} \lambda_{i}^{a} \lambda_{j}^{a} + V_{Ds} \sum_{a=13}^{14} \lambda_{i}^{a} \lambda_{j}^{a} + V_{\eta c} \lambda_{i}^{15} \lambda_{j}^{15} + V_{B} \sum_{a=16}^{19} \lambda_{i}^{a} \lambda_{j}^{a} + V_{Bs} \sum_{a=20}^{21} \lambda_{i}^{a} \lambda_{j}^{a} + V_{Bc} \sum_{a=22}^{23} \lambda_{i}^{a} \lambda_{j}^{a} + V_{\eta_{b}} \lambda_{i}^{24} \lambda_{j}^{24} \right] \vec{\sigma_{i}} \cdot \vec{\sigma_{j}}$$

Introduction	Review of SU(3) _F Sector	Extension to Heavy Baryons	Results ●○○○	Conclusions
Link Democra				

Light Baryons

$SU(5)_F$ vs. $SU(3)_F$ - N, Δ , \wedge Spectra Comparison

Introduction	Review of <i>SU</i> (3) _F Sector	Extension to Heavy Baryons	Results o●○○	Conclusions
Light Baryons				

$SU(5)_F$ vs. $SU(3)_F$ - Σ , Ξ , Ω Spectra Comparison

Introduction	Review of SU(3) _F Sector	Extension to Heavy Baryons	Results ○○●○	Conclusions
Heavy Baryons				
Charm B	aryon Spectra			

Introduction	Review of SU(3) _F Sector	Extension to Heavy Baryons	Results ○○○●	Conclusions
Heavy Baryons				
Bottom E	Baryon Spectra			

Introduction	Review of SU(3) _F Sector	Extension to Heavy Baryons	Results	Conclusions
Conclusi	ons			

- We propose a universal RCQM based on GBE that works in all sectors
- While pure OGE is ruled out in the light and strange sector, there is a possibility that a hybrid model consisting of GBE
 + OGE survives in the heavy sector
- In order to concretely discern the correct Q-Q interaction for heavy-light and heavy-heavy interactions more data from heavy baryon spectroscopy is needed!

Introduction	Review of SU(3) _F Sector	Extension to Heavy Baryons	Results 0000	Conclusions
Thanks				

Contributors

- Special thanks to my collaborators who made important contributions to this work!
- Ki-Seok Choi
- Dr. W. Plessas

References

- Melde, Plessas, Sengl Phys. Rev. D 77, 114002 (2008)
- K.S. Choi PhD Seminar Nov. 3 2010
- Glozman, Plessas, Varga, Wagenbrunn Phys. Rev. D 58, 094030 (1998)

APPENDIX

Level Crossings as Calculated by the Faddeev Method

Plot previously appeared in Phys. Rev. D 58 094030 (1998) calculated by the SVM.

Level Crossings as Calculated by the Faddeev Method

Plot previously appeared in Phys. Rev. D 58 094030 (1998) calculated by the SVM.

Baryon	J^P	Theory		Experiment
-		GBE	OGE	PDG
N(939)	$\left \frac{1}{2}^{+} \right $	939	939	938-940
N(1440)	$\frac{1}{2}^{+}$	1459	1577	1420-1470
N(1520)	$\frac{3}{2}^{-}$	1519	1521	1515-1525
N(1675)	$\frac{5}{2}$	1647	1690	1670-1680
N(1710)	$\left \frac{1}{2}^{+} \right $	1776	1859	1680-1740
Δ(1232)	$\begin{vmatrix} \frac{3}{2} \end{vmatrix}$	1240	1231	1231-1233
Δ(1600)	$\left \frac{\overline{3}}{2} \right $	1718	1854	1550-1700
Δ(1620)	$\frac{1}{2}^{-}$	1642	1642	1600-1660

All values in MeV

Melde, Plessas, Sengl - Phys. Rev. D 77, 114002 (2008)

Baryon	J^P	TI	neory	Experiment
-		GBE	OGE	PDG
Λ(1116)	$\frac{1}{2}^{+}$	1136	1113	1116
Λ(1690)	$\frac{1}{2}^{-}$	1682	1734	1685-1695
Λ(1800)	$\frac{1}{2}^{-}$	1778	1844	1720-1850
Σ(1193)	$\frac{1}{2}^{+}$	1180	1213	1189-1197
Σ(1385)	$\frac{3}{2}^{+}$	1389	1373	1383-1387
Σ(1560)	$\frac{1}{2}^{1}$	1677	1732	1546-1576
Ξ(1318)	$\frac{1}{2}^{+}$	1348	1346	1315-1321
Ξ(1820)	$\frac{3}{2}^{-}$	1792	1894	1818-1828
Ξ(1950)	$\frac{5}{2}^{-}$	1881	1993	1935-1965

Melde, Plessas, Sengl - Phys. Rev. D 77, 114002 (2008)

Baryon	J ^P	Theory		Experiment
		SU(3)	SU(5)	PDG
N(939)	$\left \frac{1}{2}^+ \right $	939	939	938-940
N(1440)	$\left \frac{1}{2}^{+} \right $	1459	1461	1420-1470
N(1520)	$\frac{3}{2}^{-}$	1519	1512	1515-1525
N(1675)	$\frac{5}{2}$	1647	1641	1670-1680
N(1710)	$\left \frac{\overline{1}}{2}^{+} \right $	1776	1771	1680-1740
∆(1232)	$\frac{3}{2}^+$	1240	1238	1231-1233
$\Delta(1600)$	$\frac{3}{2}^+$	1718	1718	1550-1700
∆(1620)	$\frac{1}{2}^{-}$	1642	1637	1600-1660

All values in MeV

Baryon	J ^P	Theory		Experiment
		SU(3)	SU(5)	PDG
Λ(1116)	$\left \frac{1}{2}^{+} \right $	1136	1128	1116
Λ(1690)	$\frac{3}{2}$	1683	1669	1685-1695
Λ(1800)	$\frac{1}{2}^{-}$	1778	1771	1720-1850
Σ(1193)	$\frac{1}{2}^{+}$	1180	1171	1189-1197
Σ(1385)	$\frac{3}{2}^+$	1389	1386	1383-1387
Σ(1660)	$\frac{1}{2}^{+}$	1616	1627	1630-1690
三(1318)	$\frac{1}{2}^{+}$	1348	1330	1315-1321
Ξ(1530)	$\frac{3}{2}^{-}$	1528	1523	1532-1535
Ξ[1690]	$\left \frac{1}{2} \right $	1805	1794	1680-1700

Charm Baryon Spectra

Baryon	JP	GBE	PDG	Status
Λ _c	$\frac{1}{2}^{+}$	2297	$\textbf{2286.46} \pm \textbf{0.14}$	****
Λ_c	$\frac{1}{2}^+$	2925	$2939.3^{+1.4}_{-1.5}$	***
Λ_c	$\frac{1}{2}^{-}$	2576	$\textbf{2595.4} \pm \textbf{0.6}$	***
Λ_c	$\frac{3}{2}$	2577	$\textbf{2628.1} \pm \textbf{0.6}$	***
Λ_c	$\frac{5}{2}^{+}$	2808	2881.53 ± 0.35	***
Σc	$\frac{1}{2}^{+}$	2465	2454.02 ± 0.18	****
Σc	$\frac{1}{2}^{-}$	2749	2801^{+4}_{-6}	***
Σ_c	$\frac{3}{2}^{+}$	2500	2518.4 ± 0.6	***
Ω_c	$\frac{1}{2}^{+}$	2711	2695.2 ± 1.7	***
Ω_c	$\frac{3}{2}^+$	2753	$\textbf{2765.9} \pm \textbf{2.0}$	***

New Meson Exchanges

In $SU(4)_F$

$$4 \otimes \overline{4} = \square \otimes \square = \square \oplus \square = 15 \oplus 1$$
 (5)

 $U(5)_L \times U(5)_R = SU(5)_L \times SU(5)_R \times U(1)_V \times U(1)_A$

Baryon Multiplets

 $\ln SU(4)_F$

$$4\otimes 4\otimes 4 = 20\oplus 20\oplus 20\oplus \bar{4} \tag{8}$$

$\ln SU(5)_F$

$$5\otimes 5\otimes 5=35\oplus 40\oplus 40\oplus \bar{10} \tag{9}$$

Of course $SU(3)_F \subset SU(4)_F \subset SU(5)_F$ so the the new potential should produce results consistent with the old potential

Baryon Multiplet Examples

 Σ_c^{++}

Σ

$$V_{\chi} = \left[V_{\pi} \sum_{a=1}^{3} \lambda_{i}^{a} \lambda_{j}^{a} + V_{K} \sum_{a=4}^{7} \lambda_{i}^{a} \lambda_{j}^{a} + V_{\eta} \lambda_{i}^{8} \lambda_{j}^{8} + \frac{2}{5} V_{\eta'} + V_{D} \sum_{a=9}^{12} \lambda_{i}^{a} \lambda_{j}^{a} + V_{D_{s}} \sum_{a=13}^{14} \lambda_{i}^{a} \lambda_{j}^{a} + V_{\eta_{c}} \lambda_{i}^{15} \lambda_{j}^{15} + V_{B} \sum_{a=16}^{19} \lambda_{i}^{a} \lambda_{j}^{a} + V_{B_{s}} \sum_{a=20}^{21} \lambda_{i}^{a} \lambda_{j}^{a} + V_{B_{c}} \sum_{a=22}^{23} \lambda_{i}^{a} \lambda_{j}^{a} + V_{\eta_{b}} \lambda_{j}^{24} \lambda_{j}^{24} \right] \vec{\sigma_{i}} \cdot \vec{\sigma_{j}}$$

Consequences in the Light and Strange sector

Diagonal Elements in λ^{15}

$$\lambda^{15} = \frac{1}{\sqrt{6}} \begin{pmatrix} 1 & 0 & 0 & 0 & 0\\ 0 & 1 & 0 & 0 & 0\\ 0 & 0 & 1 & 0 & 0\\ 0 & 0 & 0 & -3 & 0\\ 0 & 0 & 0 & 0 & 0 \end{pmatrix}$$

Diagonal Elements in λ^{24}

$$\lambda^{24} = \frac{1}{\sqrt{10}} \left(\begin{array}{rrrrr} 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & -4 \end{array} \right)$$