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Spin-dependence in quark models

Mass formula in perturbation theory,

MSLJ = M + ∆s〈1
2

1
2〉S + ∆t〈T〉SLJ + ∆o〈L · S〉SLJ,

for mesons with spin S, orbital L and total J angular momenta.

I 〈. . .〉 are model independent.
I M and the ∆’s are model dependent, but common.
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P-wave mesons: theory

Four equations, and four unknowns:

M1P1
= M − 3

4
∆s

M3P0
= M +

1
4

∆s + 2∆t − 2∆o

M3P1
= M +

1
4

∆s −∆t −∆o

M3P2
= M +

1
4

∆s +
1
5

∆t + ∆o

Hyperfine splitting:

1
9
(
M3P0

+ 3M3P1
+ 5M3P2

)
−M1P1

= ∆s ≈ 0



P-wave mesons: experiment

Charmonia:

Mχc(1P) −Mhc(1P) = −0.05± 0.19± 0.16 MeV

Bottomonia:

Mχb(1P) −Mhb(1P) = +2± 4± 1 MeV (BaBar)

Mχb(1P) −Mhb(1P) = +1.62± 1.52 MeV (Belle)

Mχb(2P) −Mhb(2P) = +0.48+1.57
−1.22 MeV (Belle)



Mass shifts due to channel coupling

Coupling to open flavour pairs

(QQ)↔ (Qq)(qQ)

I unquenching causes mass shifts
I χ0, χ1, χ2 and h couple to different channels and with different

strengths, so their mass shifts differ
I expect violations to the mass formula

1
9
(
M3P0

+ 3M3P1
+ 5M3P2

)
−M1P1

= 0



Mass shifts due to channel coupling

Charmonia
Mass shifts of

I χc0, χc1, χc2 and hc,

due to couplings
I DD̄, DD̄∗, D∗D̄∗, and
I DsD̄s, DsD̄∗s , D∗s D̄∗s

Bottomonia
Mass shifts of

I χb0, χb1, χb2 and hb,

due to couplings
I BB̄, BB̄∗, B∗B̄∗, and
I BsB̄s, BsB̄∗s , B∗s B̄∗s

Literature
Barnes & Swanson (BT)
Kalashnikova (K)
Li, Meng & Chao (LMC)
Yang, Li, Chen & Deng (YLCD)
Ono & Törnqvist (OT)
Liu & Ding (LD)



Mass shifts due to channel coupling

∆M3P0
∆M3P1

∆M3P2
∆M1P1

Induced ∆s

BS (1P,cc) 459 496 521 504
K (1P,cc) 198 215 228 219
LMC (1P,cc) 35 38 63 52
YLCD (1P,cc) 131 152 175 162
OT (1P,cc) 173 180 185 182
OT (1P,bb) 43 44 45 44
OT (2P,bb) 55 56 58 57
LD (1P,bb) 80.777 84.823 87.388 85.785
LD (2P,bb) 73.578 77.608 80.146 78.522

I ∆MSLJ can be very large
I ∆MS′L′J′ −∆MSLJ is smaller
I −1

9

(
∆M3P0

+ 3∆M3P1
+ 5∆M3P2

)
+ ∆M1P1

is smaller still
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Mass shifts due to channel coupling

The models differ in many ways:

I perturbation theory vs. coupled channel equations
I harmonic oscillator vs. coulomb + linear wavefunctions
I universal vs. flavour-dependent wavefunctions
I exact SU(3) vs. broken SU(3) in pair creation

But have important common features:

I coupling (QQ)→ (Qq)(qQ) has qq in spin triplet
I spin and spatial degrees of freedom factorise
I spin is conserved



Computing the mass shifts

The mass shift
I of a state with S, L, J quantum numbers
I due to coupling with mesons spins s1 and s2 in partial wave l

∆Ms1s2l
SLJ = Cs1s2l

SLJ

∫
dp

p2|Al(p)|2

εs1s2
SLJ + p2/2µs1s2

I εs1s2
SLJ and µs1s2 are binding energy and reduced mass

I Cs1s2l
SLJ depends only on the angular momenta

I Al(p) depends only on the spatial degrees of freedom
I Al(p) is common to all channels if the radial wavefunctions
χ0 = χ1 = χ2 = h and D = D∗
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Computing the mass shifts

Total mass shifts

∆MSLJ =
∑
s1s2l

Cs1s2l
SLJ

∫
dp

p2|Al(p)|2

εs1s2
SLJ + p2/2µs1s2

Continuum probability

PSLJ =
∑
s1s2l

Cs1s2l
SLJ

∫
dp

p2|Al(p)|2(
εs1s2

SLJ + p2/2µs1s2

)2



The equal mass limit

In the equal mass limit (χ0 = χ1 = χ2 = h and D = D∗)

I εs1s2
SLJ = ε

I µs1s2 = µ

The integrals are common to all channels

∆Ml =

∫
dp

p2|Al(p)|2

ε+ p2/2µ

Pl =

∫
dp

p2|Al(p)|2

(ε+ p2/2µ)2
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The equal mass limit

The coefficients Cs1s2l
SLJ :

l 3P0
3P1

3P2
1P1

DD S 3/4 0 0 0
D∗D S 0 1 0 1/2
D∗D∗ S 1/4 0 1 1/2

DD D 0 0 3/20 0
D∗D D 0 1/4 9/20 1/2
D∗D∗ D 1 3/4 2/5 1/2



The equal mass limit

Mass shift and probability are independent of S and J:

∆MSLJ =
∑

l

∆Ml

PSLJ =
∑

l

Pl

Mass formula after shifts

M′SLJ = M′ + ∆s〈1
2

1
2〉S + ∆t〈T〉SLJ + ∆o〈L · S〉SLJ,

I with a renormalisation of M′ = M −
∑

l ∆Ml

I loop theorem (Barnes and Swanson)
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With physical masses

Expanding around µs1s2ε
s1s2
SLJ = µε(1 + Xs1s2

SLJ ):

∆Ms1s2l
SLJ = Cs1s2l

SLJ

∫
dp

p2|Al(p)|2

εs1s2
SLJ + p2/2µs1s2

= Cs1s2l
SLJ

µs1s2

µ

1
ε

∞∑
n=0

(−Xs1s2
SLJ )n

∫
dp

p2|Al(p)|2

(1 + p2/2µε)n+1 .

I Integrals are common to all channels, and
I the first two are ∆Ml and Pl

Model-independent formula for the mass shift

∆Ms1s2l
SLJ ≈ Cs1s2l

SLJ
µs1s2

µ

(
∆Ml − Xs1s2

SLJ εP
l)
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With physical masses

The total mass shift

∆MSLJ =
∑
s1s2l

Cs1s2l
SLJ

µs1s2

µ

(
∆Ml − Xs1s2

SLJ εP
l)

I channels are weighted by coefficients Cs1s2l
SLJ and mass factors

I everything is expressed in terms of ∆Ml and Pl

Mass formula after shifts

M′SLJ = M′ + ∆′s〈1
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1
2〉S + ∆′t〈T〉SLJ + ∆′o〈L · S〉SLJ

I With renormalised M′, ∆′s, ∆′t and ∆′o
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With physical masses

Renormalisation:

M′ = M −
∑

l
∆Ml

∆′s = ∆s

(
1−

∑
l
Pl
)

∆′t = ∆t

(
1−

∑
l
Pl
)

∆′o = ∆o

(
1−

∑
l
Pl
)
−

∑
l
ξlδ

(
∆Ml

2m
−
( ε

2m
+ 1
)

Pl
)

I M′ is renormalised as before
I ∆′s and ∆′t decrease with Pl

I ∆′o involves the centre-of-mass m and splitting δ of loop mesons
I ξS = +1/2 and ξD = −1/4
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With physical masses

A potential model mass formula

M′SLJ = M′ + ∆′s〈1
2

1
2〉S + ∆′t〈T〉SLJ + ∆′o〈L · S〉SLJ

Therefore

I physical states obey the non-relativistic relation:

1
9
(
M3P0

+ 3M3P1
+ 5M3P2

)
−M1P1

= ∆′s ≈ 0

I large mass shifts can be absorbed into an adjusted potential



Observations

∆M3P0
∆M3P1

∆M3P2
∆M1P1

Induced H.S.
BS (1P,cc) 459 496 521 504

− 1.8

K (1P,cc) 198 215 228 219

− 1.3

LMC (1P,cc) 35 38 63 52

− 2.9

YLCD (1P,cc) 131 152 175 162

− 0.4

OT (1P,cc) 173 180 185 182

− 0.0

OT (1P,bb) 43 44 45 44

− 0.4

OT (2P,bb) 55 56 58 57

− 0.0

LD (1P,bb) 80.777 84.823 87.388 85.785

− 0.013

LD (2P,bb) 73.578 77.608 80.146 78.522

− 0.048

∆M3P2
> ∆M1P1

> ∆M3P1
> ∆M3P0
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The induced hyperfine splitting is always negative
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∆M3P0
∆M3P1

∆M3P2
∆M1P1

Induced H.S.
BS (1P,cc) 459 496 521 504 − 1.8
K (1P,cc) 198 215 228 219 − 1.3
LMC (1P,cc) 35 38 63 52 − 2.9
YLCD (1P,cc) 131 152 175 162 − 0.4
OT (1P,cc) 173 180 185 182 − 0.0
OT (1P,bb) 43 44 45 44 − 0.4
OT (2P,bb) 55 56 58 57 − 0.0
LD (1P,bb) 80.777 84.823 87.388 85.785 − 0.013
LD (2P,bb) 73.578 77.608 80.146 78.522 − 0.048

It works very well for bb because Xs1s2
SLJ is small



Observations

It also works for the D-wave family

1
15
(
3M3D1

+ 5M3D2
+ 7M3D3

)
−M1D2

≈ 0

I bottomonia 3D1, 3D2 and 3D3 recently discovered
I prediction M1D2

= 10165.84± 1.8 MeV
(TJB, Piccinini, Polosa & Sabelli, PRD 82,074003 (2010))

Everything depends upon the assumptions

I coupling (QQ)→ (Qq)(qQ) has qq in spin triplet
I spin and spatial degrees of freedom factorise
I the same assumptions are supported by lattice QCD

(TJB & Close, PRD 74,034003 (2006))


