



1

### First mass measurements at LHCb

#### R. Cardinale on behalf of the LHCb Collaboration

University of Genova & INFN

Hadron 2011 München, 13-17 June 2011

R. Cardinale on behalf of the LHCb Collaboration Hadron 2011, München, 13-17 June 2011

## **Motivations**

- Measurement of the absolute mass of b-hadrons  $(B^+, B^0, B_s^0, \Lambda_b, B_c^+)$  and X(3872) [see talk given by Bo Liu] using  $\sim 35 \text{ pb}^{-1}$  data collected during 2010 at LHCb at  $\sqrt{s} = 7 \text{ TeV}$
- Quarks and gluons in baryons and mesons are bound together by strong interaction described by QCD
- Hadrons masses are fundamental physical observables
- Mass spectra are calculated using QCD
- A test of QCD can be performed using this simple property of hadrons.

# LHCb



- Tracking System: VErtex LOcator, Trigger Tracker, T1-T3 tracking stations  $(\Delta p/p=0.35-0.55\%)\oplus$  Dipole Magnet
- Muon Detector  $(\mu ID \sim 98\%)$

R. Cardinale on behalf of the LHCb Collaboration Hadron 2011, München, 13-17 June 2011

## **Event Selection**

Using exclusive decay modes with  $J/\psi X$  final states:

- $\mathbf{1} \ B^+ \to J/\psi K^+$
- $\mathbf{2} \ B^0 \to J/\psi K^{*0}$
- **3**  $B^0 \rightarrow J/\psi K_s^0$
- 4  $B^0_s \rightarrow J/\psi \phi$
- **5**  $\Lambda_b \to J/\psi \Lambda$
- 6  $B_c^+ \rightarrow J/\psi \pi^+$

- with:
  - $J/\psi \rightarrow \mu^+\mu^-$
  - $\phi \to K^+ K^-$
  - $K^{*0} \rightarrow K^- \pi^+$
  - $K^0_s 
    ightarrow \pi^+\pi^-$
  - $\Lambda \to p\pi^-$

- and charge-conjugate modes
  - Selection based on track quality, vertex quality,  $p_t$ , impact parameter, *b*-hadron proper time, PID
  - $J/\Psi,\,K^0_s$  and  $\Lambda$  mass-constrained vertex fit (improve b-hadron mass resolution)

### **b-hadron**



### **b-hadron**



# Alignment (I)

Good alignment of the LHCb spectrometer is essential for precise particle mass measurements

- Standard Alignment using  $J/\psi \to \mu\mu$  high-momentum tracks with vertex and mass constraint
- New Alignment using  $D^0 \to K^- \pi^+$ : clean signal, less sensitive to background and more asymmetric decays available
- Study of bias of reconstructed  $J/\psi$  mass as a function of track pseudorapidity  $(\eta)$ , momentum (p) and the angle between the normal to the decay plane and the orientation of the magnetic field  $(\phi_d)$
- Shifts in the  $J/\psi$  mass correlated to TT temperature: time dependent alignment procedure

# Alignment (II)

- TT operational temperature changed during 2010 data taking
- $\bullet\,$  Thermal expansion/contraction of the TT modules:  $\sim 400\,\mu m$
- To be compared with intrinsic resolution of the detector up to  $50\,\mu{\rm m}$
- Not negligible
- Time dependent alignment needed



## Momentum Scale Calibration

• No bias on the momentum measurement (precision sub-per mil)

$$m_{12}^2 = (E_1 + E_2)^2 - (\vec{p_1} + \vec{p_2}) \cdot (\vec{p_1} + \vec{p_2})$$

 $(1-\alpha)$  is the correction factor to be applied to the track momenta:

 $\Delta m = m_P - m_{12} = -\alpha m_P$ 

• Calibration using  $J/\psi \to \mu \mu$  decay channel



• Mass of the  $J/\psi$  stable after time dependent alignment and momentum scale calibration

• 
$$\frac{\Delta m(J/\psi)}{m(J/\psi)} = 2 \times 10^{-5}$$

 $\bullet~0.2~MeV/c^2$  over entire 2010 run

R. Cardinale on behalf of the LHCb Collaboration Hadron 2011, München, 13-17 June 2011

## Validation (I)

• Check of momentum scale calibration using other two-body resonance decay modes  $(\Upsilon, D^0, K^0_s)$ 

| Decay                          | Measured mass $[{ m MeV/c^2}]$ | PDG average [ ${ m MeV/c^2}$ ] |
|--------------------------------|--------------------------------|--------------------------------|
| $\Upsilon(1S) \to \mu^+ \mu^-$ | $9459.90 \pm 0.54$             | $9460.30 \pm 0.26$             |
| $J/\psi \to \mu^+\mu^-$        | $3096.97 \pm 0.01$             | $3096.916 \pm 0.011$           |
| $D^0 \to K^- \pi^+$            | $1864.75 \pm 0.07$             | $1864.83 \pm 0.14$             |
| $K_{\rm S}^0 \to \pi^+ \pi^-$  | $497.62\pm0.01$                | $497.61\pm0.02$                |

• Estimation of the momentum scale uncertainty:  $10^{-4}$ 

### Validation: $\psi(2S) \rightarrow J/\psi \pi^+ \pi^-$

| Uncalibrated Mass [ $\mathrm{MeV/c^2}$ ] | $3685.94 \pm 0.06$ |
|------------------------------------------|--------------------|
| Calibrated Mass [ $ m MeV/c^2$ ]         | $3686.12 \pm 0.06$ |
| PDG average [ $ m MeV/c^2$ ]             | $3686.09 \pm 0.04$ |

### $\psi(2S)$ mass in very good agreement!



- Difference of measured  $\psi(2S)$  mass and PDG value as a function of momentum, transverse momentum, energy Q released in the decay
- No evidence systematic bias
  - R. Cardinale on behalf of the LHCb Collaboration Hadron 2011, München, 13-17 June 2011

### • Fit Model

### Momentum Calibration

- Precision on the momentum scale: 10<sup>-4</sup>
- η dependance of the momentum scale factor
- Detector Material: material distribution affects momentum scale determination (10% increasing of material budget)
- Detector Alignment
  - TT removal effect
  - VELO z-scaling: investigated scaling track slopes in the VELO

### • $\phi$ bias (opening angle)

- Fit Model
- Momentum Calibration
  - Precision on the momentum scale:  $10^{-4}$
  - η dependance of the momentum scale factor
- Detector Material: material distribution affects momentum scale determination (10% increasing of material budget)
- Detector Alignment
  - TT removal effect
  - VELO z-scaling: investigated scaling track slopes in the VELO
- $\phi$  bias (opening angle)

- Fit Model
- Momentum Calibration
  - Precision on the momentum scale:  $10^{-4}$
  - η dependance of the momentum scale factor
- Detector Material: material distribution affects momentum scale determination (10% increasing of material budget)
- Detector Alignment
  - TT removal effect
  - VELO z-scaling: investigated scaling track slopes in the VELO

### $ullet \, \phi \,$ bias (opening angle)

- Fit Model
- Momentum Calibration
  - Precision on the momentum scale:  $10^{-4}$
  - η dependance of the momentum scale factor
- Detector Material: material distribution affects momentum scale determination (10% increasing of material budget)
- Detector Alignment
  - TT removal effect
  - VELO z-scaling: investigated scaling track slopes in the VELO

### • $\phi$ bias (opening angle)

R. Cardinale on behalf of the LHCb Collaboration Hadron 2011, München, 13-17 June 2011

- Fit Model
- Momentum Calibration
  - Precision on the momentum scale:  $10^{-4}$
  - η dependance of the momentum scale factor
- Detector Material: material distribution affects momentum scale determination (10% increasing of material budget)
- Detector Alignment
  - TT removal effect
  - VELO z-scaling: investigated scaling track slopes in the VELO
- $\phi$  bias (opening angle)

- Fit Model
- Momentum Calibration
  - Precision on the momentum scale:  $10^{-4}$
  - η dependance of the momentum scale factor
- Detector Material: material distribution affects momentum scale determination (10% increasing of material budget)
- Detector Alignment
  - TT removal effect
  - VELO z-scaling: investigated scaling track slopes in the VELO
- $\phi$  bias (opening angle)

For all the modes except  $B_c$ :  $0.16 \div 0.20 \text{ MeV}/\text{c}^2$ 

### **Results:** $B_u$ and $B_d$



### LHCb Preliminary

$$\begin{split} M(B^+ \to J/\psi K^+) &= 5279.27 \pm 0.11 \text{ (stat)} \pm 0.20 \text{ (syst)} \text{ MeV/c}^2 \\ M(B^0 \to J/\psi K^{*0}) &= 5279.54 \pm 0.15 \text{ (stat)} \pm 0.16 \text{ (syst)} \text{ MeV/c}^2 \\ M(B^0 \to J/\psi K^0_s) &= 5279.61 \pm 0.29 \text{ (stat)} \pm 0.20 \text{ (syst)} \text{ MeV/c}^2 \end{split}$$

#### $B_d$ and $B_u$ world best measurements

R. Cardinale on behalf of the LHCb Collaboration Hadron 2011, München, 13-17 June 2011

### **Results:** $B_s$ , $B_c$ and $\Lambda_b$



### **Mass Difference Results**

$$\begin{split} M(B^0 \to J/\psi K^*) &- M(B^+ \to J/\psi K^+) &= 0.27 \pm 0.19 \,(\text{stat}) \pm 0.12 \,(\text{syst}) \\ M(B^0 \to J/\psi K^0_{\text{S}}) &- M(B^+ \to J/\psi K^+) &= 0.34 \pm 0.31 \,(\text{stat}) \pm 0.10 \,(\text{syst}) \\ M(B^0_s \to J/\psi \phi) &- M(B^+ \to J/\psi K^+) &= 87.33 \pm 0.30 \,(\text{stat}) \pm 0.19 \,(\text{syst}) \\ M(\Lambda_b \to J/\psi \Lambda) &- M(B^+ \to J/\psi K^+) &= 340.22 \pm 0.71 \,(\text{stat}) \pm 0.08 \,(\text{syst}) \\ M(B^+_c \to J/\psi \pi^+) &- M(B^+ \to J/\psi K^+) &= 988.7 \pm 4.0 \,(\text{stat}) \pm 0.5 \,(\text{syst}) \end{split}$$



R. Cardinale on behalf of the LHCb Collaboration Hadron 2011, München, 13-17 June 2011

### **Conclusions**

- Mass measurements of  $B_u$ ,  $B_d$ ,  $B_s$ ,  $B_c$  and  $\Lambda_b$  have been shown
- Agreement of LHCb measurements with previous values
- LHCb measurements improve the uncertainties by a factor two
- World best measurements:  $B_u, B_d, B_s$  and  $\Lambda_b$
- 2011 data will give us the possibility of more precise mass measurement of  $B_{c}$
- Plans for 2011: study of  $\Omega_b$  and other *b*-baryons
- Searching of excited B hadrons  $(B_{s1}, B_{s2}^*)$

Spare Slides

# Systematic uncertainties on $B^+ \rightarrow J/\psi K^+$

| Source of uncertainty               | Value [ ${ m MeV/c^2}$ ] |
|-------------------------------------|--------------------------|
| Mass fitting:                       |                          |
| Background model                    | 0.04                     |
| Signal model                        | 0.01                     |
| Momentum calibration:               |                          |
| Average momentum scale              | 0.15                     |
| $\eta$ dependance of momentum scale | 0.04                     |
| Detector description:               |                          |
| Energy loss correction              | 0.10                     |
| Detector alignment:                 |                          |
| Vertex detector (track slopes)      | 0.05                     |
| Tracking stations (TT information ) | 0.05                     |
| Quadratic sum                       | 0.20                     |

# Systematic uncertainties for the $B^0 \rightarrow J/\psi K^{*0}$

| Source of uncertainty               | Value [ ${ m MeV/c^2}$ ] |
|-------------------------------------|--------------------------|
| Mass fitting:                       |                          |
| Background model                    | 0.03                     |
| Signal model                        | 0.02                     |
| Momentum calibration:               |                          |
| Average momentum scale              | 0.14                     |
| $\eta$ dependance of momentum scale | 0.00                     |
| Detector description:               |                          |
| Energy loss correction              | 0.00                     |
| Detector alignment:                 |                          |
| Vertex detector (track slopes)      | 0.04                     |
| Tracking stations (TT information ) | 0.05                     |
| Quadratic sum                       | 0.16                     |

# Systematic uncertainties for the $B^0 \rightarrow J/\psi K_{\rm S}^0$

| Source of uncertainty               | Value [ ${ m MeV/c^2}$ ] |
|-------------------------------------|--------------------------|
| Mass fitting:                       |                          |
| Background model                    | 0.00                     |
| Signal model                        | 0.06                     |
| Momentum calibration:               |                          |
| Average momentum scale              | 0.15                     |
| $\eta$ dependance of momentum scale | 0.09                     |
| Detector description:               |                          |
| Energy loss correction              | 0.05                     |
| Detector alignment:                 |                          |
| Vertex detector (track slopes)      | 0.04                     |
| Tracking stations (TT information ) | 0.05                     |
| Quadratic sum                       | 0.20                     |

# Systematic uncertainties for the $B_s^0 \rightarrow J/\psi\phi$

| Source of uncertainty               | Value [ ${ m MeV/c^2}$ ] |
|-------------------------------------|--------------------------|
| Mass fitting:                       |                          |
| Background model                    | 0.01                     |
| Signal model                        | 0.02                     |
| Momentum calibration:               |                          |
| Average momentum scale              | 0.11                     |
| $\eta$ dependance of momentum scale | 0.03                     |
| Detector description:               |                          |
| Energy loss correction              | 0.03                     |
| Detector alignment:                 |                          |
| Vertex detector (track slopes)      | 0.03                     |
| Tracking stations (TT information ) | 0.05                     |
| $\phi$ -bias                        | 0.16                     |
| Quadratic sum                       | 0.21                     |

R. Cardinale on behalf of the LHCb Collaboration Hadron 2011, München, 13-17 June 2011

# Systematic uncertainties for the $\Lambda_b \rightarrow J/\psi \Lambda$

| Source of uncertainty               | Value [ $\mathrm{MeV/c^2}$ ] |
|-------------------------------------|------------------------------|
| Mass fitting:                       |                              |
| Background model                    | 0.00                         |
| Signal model                        | 0.07                         |
| Momentum calibration:               |                              |
| Average momentum scale              | 0.14                         |
| $\eta$ dependance of momentum scale | 0.02                         |
| Detector description:               |                              |
| Energy loss correction              | 0.09                         |
| Detector alignment:                 |                              |
| Vertex detector (track slopes)      | 0.04                         |
| Tracking stations (TT information ) | 0.05                         |
| Quadratic sum                       | 0.19                         |

### Tabella:

# Systematic uncertainties for the $B_c^+ \rightarrow J/\psi \pi^+$

| Source of uncertainty               | Value [ ${ m MeV/c^2}$ ] |
|-------------------------------------|--------------------------|
| Mass fitting:                       |                          |
| Background model                    | 0.32                     |
| Signal model                        | 0.07                     |
| Momentum calibration:               |                          |
| Average momentum scale              | 0.23                     |
| $\eta$ dependance of momentum scale | 0.44                     |
| Detector description:               |                          |
| Energy loss correction              | 0.11                     |
| Detector alignment:                 |                          |
| Vertex detector (track slopes)      | 0.06                     |
| Tracking stations (TT information ) | 0.05                     |
| Quadratic sum                       | 0.61                     |

### 

Estimation of the bias using  $D^{\pm} \rightarrow \phi \pi^{\pm}$ 

Before momentum scale calibration: After momentum scale calibration:  $1869.28 \pm 0.02 \text{ MeV/c}^2$   $1869.93 \pm 0.02 \text{ MeV/c}^2$ 

PDG D mass:  $1869.60 \pm 0.02 \text{ MeV/c}^2$ Apply this correction to  $B_s \rightarrow J/\psi\phi$  and assign error on the PDG D mass:  $0.16 \text{ MeV/c}^2$ 

### **Detector alignment**

### TT hit removal bias estimation

- Sample where no detectors are removed
- Sample with TT hits removed
- Fit of the tracks
- Same Offline Selection for the two samples
- $\Delta M = M$ (without TT)-M(with TT)
- Mean value of the distribution calculated analitically
- $<\Delta m>=-0.034\pm0.05$ , compatible with zero
- Systematic error = 0.05