Bottomonium results at Belle A.Kuzmin BINP

For Belle Collaboration

Hadron 2011, June 14, 2011

1

PRL100,112001(2008)

Puzzles of Y(5S) decays

At 21.7 fb⁻¹ Υ (5S) -> Υ (nS) $\pi^+\pi^-$ two orders of magnitude larger than in Υ (4S) decay

Γ(MeV)

$\Upsilon(5S) \to \Upsilon(1S)\pi^+\pi^-$	$0.59 \pm 0.04 \pm 0.09$
$\Upsilon(5S) \to \Upsilon(2S)\pi^+\pi^-$	$0.85 \pm 0.07 \pm 0.16$
$\Upsilon(5S) \to \Upsilon(3S)\pi^+\pi^-$	$0.52^{+0.20}_{-0.17} \pm 0.10$
$\Upsilon(2S) \to \Upsilon(1S)\pi^+\pi^-$	0.0060
$\Upsilon(3S) \to \Upsilon(1S)\pi^+\pi^-$	0.0009
$\Upsilon(4S) \to \Upsilon(1S)\pi^+\pi^-$	0.0019

-Rescattering $\Upsilon(5S) \rightarrow BB\pi\pi \rightarrow \Upsilon(nS)\pi\pi$ Simonov JETP Lett 87,147(2008) -Exotic resonance Y_h near $\Upsilon(5S)$

 Υ (5S) is very interesting and not yet understood Finally Belle recorded 121.4fb⁻¹ at Υ (5S)

> arXiv:1104.2025 Observation of $e^+e^- \rightarrow \pi^+\pi^- h_c$ by CLEO \Rightarrow Belle search for h_b in $\Upsilon(5S)$ data

Dedicated energy scan \Rightarrow

shapes of $R_{\rm b}$ and $\sigma(\Upsilon \pi \pi)$ different (2 σ)

PRD82,091106R(2010)

Introduction to h_b(**nP**)

(bb): S=0 L=1 J^{PC}=1⁺⁻

 $\begin{array}{l} \underline{\text{Expected mass}} \; (\text{CoG of } \chi_{\text{bJ}} \;) \\ \approx \; (M\chi_{\text{b0}} + 3 \; M\chi_{\text{b1}} + 5 \; M\chi_{\text{b2}}) \; / \; 9 \\ \Delta M_{\text{HF}} \Rightarrow \; \text{test of hyperfine interaction} \end{array}$

For $h_c \Delta M_{HF} = -0.12 \pm 0.30$, expect smaller deviation for $h_b(nP)$.

arXiv:1102.4565 Evidence from BaBar

 $B(\Upsilon(3S) \rightarrow \pi^0 h_b) x B(h_b \rightarrow \gamma \eta_b) = (3.7 \pm 1.1 \pm 0.7) x 10^{-4}$

Description of fit to MM($\pi^+\pi^-$)

 $MM(\pi+\pi-)$

Background Subtracted Results 121.4 fb⁻¹

6

h_b results

Deviations from CoG of χ_{bJ} masses consistent with zero.

Ratio of production rates

$$\underbrace{ \stackrel{\text{\tiny bb}}{\longleftarrow} }_{\Gamma(\Upsilon(5S) \to h_b(nP)\pi^+\pi^-)} = \begin{cases} 0.407 \pm 0.079^{+0.043}_{-0.076} : h_b(1P) \\ 0.79 \pm 0.09^{+0.22}_{-0.10} : h_b(2P) \end{cases}$$

$$\underbrace{ \stackrel{\text{\tiny bb}}{\longleftarrow} }_{\text{\tiny bb}}$$
Process with spin-flip is not suppressed No h_b signal at \Upsilon(4S)

• Mechanism of $\Upsilon(5S) \rightarrow h_b(nP) \pi^+\pi^-$ decay is exotic!

Resonant substructure of $\Upsilon(5S) \rightarrow h_b(1P) \pi^+\pi^-$

 $\mathsf{P}(\mathsf{h}_{\mathsf{b}}) = \mathsf{P}_{\Upsilon(5S)} - \mathsf{P}(\pi^{+}\pi^{-}) \implies \mathsf{M}(\mathsf{h}_{\mathsf{b}}\pi^{+}) = \mathsf{M}\mathsf{M}(\pi^{-}) \implies \textit{measure } \Upsilon(5S) \rightarrow h_{b}\pi\pi \textit{ yield}$

Resonant substructure of $\Upsilon(5S) \rightarrow h_{b}(2P) \pi^{+}\pi^{-}$

$\begin{array}{l} \textbf{Exclusive } \Upsilon(\textbf{5S}) \textbf{->} \Upsilon(\textbf{nS}) \ \pi^{+}\pi^{-} \\ \Upsilon(\textbf{5S}) \rightarrow \Upsilon(\textbf{nS}) \ \pi^{+}\pi^{-} \\ \Upsilon(\textbf{nS}) \rightarrow \mu^{+}\mu^{-} \end{array} (n = 1, 2, 3)$

Results: Υ(1**S**)*π*⁺*π*[−]

 $M(\Upsilon(1S)\pi^+)$ and $M(\Upsilon(1S)\pi)$ projections:

Results: Υ(2S)*π*⁺*π*[−]

 $M(\Upsilon(2S)\pi^+)$ and $M(\Upsilon(2S)\pi)$ projections:

Results: Υ(3S)*π*⁺*π*⁻

 $M(\Upsilon(3S)\pi^+)$ and $M(\Upsilon(3S)\pi)$ projections:

Fit results

[preliminary]

Final state	$\Upsilon(1S)\pi^+\pi^-$	$\Upsilon(2S)\pi^+\pi^-$	$\Upsilon(3S)\pi^+\pi^-$	$h_b(1P)\pi^+\pi^-$	$h_b(2P)\pi^+\pi^-$
$M(Z_b(10610)), \mathrm{MeV}/c^2$	$10609 \pm 3 \pm 2$	$10616 \pm 2^{+3}_{-4}$	$10608 \pm 2^{+5}_{-2}$	$10605.1 \pm 2.2^{+3.0}_{-1.0}$	$10596 \pm 7{}^{+5}_{-2}$
$\Gamma(Z_b(10610)), \mathrm{MeV}$	$22.9 \pm 7.3 \pm 2$	$21.1 \pm 4^{+2}_{-3}$	$12.2 \pm 1.7 \pm 4$	$11.4^{+4.5}_{-3.9}{}^{+2.1}_{-1.2}$	$16^{+16}_{-10}{}^{+13}_{-4}$
$M(Z_b(10650)), {\rm MeV}/c^2$	$10660\pm 6\pm 2$	$10653 \pm 2 \pm 2$	$10652 \pm 2 \pm 2$	$10654.5 \pm 2.5 {}^{+1.0}_{-1.9}$	$10651 \pm 4 \pm 2$
$\Gamma(Z_b(10650)), \mathrm{MeV}$	$12\pm10\pm3$	$16.4 \pm 3.6^{+4}_{-6}$	$10.9 \pm 2.6^{+4}_{-2}$	$20.9^{+5.4}_{-4.7}{}^{+2.1}_{-5.7}$	$12^{+11}_{-9}{}^{+8}_{-2}$
Rel. amplitude	$0.59 \pm 0.19^{+0.09}_{-0.03}$	$0.91 \pm 0.11^{+0.04}_{-0.03}$	$0.73 \pm 0.10^{+0.15}_{-0.05}$	$1.8^{+1.0}_{-0.7}{}^{+0.1}_{-0.5}$	$1.3^{+3.1}_{-1.1}{}^{+0.4}_{-0.7}$
Rel. phase, degrees	$53 \pm 61^{+5}_{-50}$	$-20 \pm 18^{+14}_{-9}$	$6 \pm 24^{+23}_{-59}$	$188^{+44}_{-58}{}^{+4}_{-9}$	$255^{+56}_{-72}^{+12}_{-183}$

Masses, widths, relative amplitudes are consistent Relative phases are swapped for Y and h_b final states ← expectation from a 'molecular' model

> <mark>Z_b(10610)</mark> M=10608.4±2.0 MeV Γ=15.6±2.5 MeV

<mark>Z_b(10650)</mark> M=10653.2±1.5 MeV Γ=14.4 ± 3.2 MeV

Confidence Levels of angular fits to $\Upsilon(5S) \rightarrow Z_{b}^{+} \pi^{-} \rightarrow [h_{b}(1P)\pi^{+}] \pi^{-}$

are disfavored compared to 1+ decay with hypothesis 1+

	$\cos heta_1$	$\cos \theta_2$	$\cos \theta_{\pi\pi}$
$Z_b(10610)$	84%	37%	1.1%
$Z_b(10650)$	15%	63%	7.2%

1P	$Z_b(10610)$		$Z_b(10650)$			
J-	$\Upsilon(2S)\pi^+\pi^-$	$\Upsilon(3S)\pi^+\pi^-$	$h_b(1P)\pi^+\pi^-$	$\Upsilon(2S)\pi^+\pi^-$	$\Upsilon(3S)\pi^+\pi^-$	$h_b(1P)\pi^+\pi^-$
1-	3.6σ	0.3σ	0.3σ	3.7σ	2.6σ	2.7σ
2+	4.3σ	3.5σ	4.0 -	4.4σ	2.7σ	0.1 -
2-	2.7 σ	2.8σ	4.3σ	2.9σ	2.6σ	2.1 σ

1+ assignment is favorable.

1-, 2+, 2- are disfavored at typically 3\sigma level.

Possible nature of Z_b's

B*B and B*B* S-wave molecules

$$\left|Z_{b}^{'}\right\rangle = \frac{1}{\sqrt{2}} \mathbf{O}_{bb}^{-} \otimes \mathbf{1}_{Qq}^{-} - \frac{1}{\sqrt{2}} \mathbf{1}_{bb}^{-} \otimes \mathbf{O}_{Qq}^{-}$$
$$\left|Z_{b}^{'}\right\rangle = \frac{1}{\sqrt{2}} \mathbf{O}_{bb}^{-} \otimes \mathbf{1}_{Qq}^{-} + \frac{1}{\sqrt{2}} \mathbf{1}_{bb}^{-} \otimes \mathbf{O}_{Qq}^{-}$$

Masses of Z_b are close to B*B(*) thresholds

- Quantum number J^P=1⁺
- Amplitude ratio A[Z_b(10610)] / A[Z_b(10650)] ~1
- Relative phase ~0 for Υ and ~180⁰ for $h_{\rm b}$.
- Explains why $h_b \pi \pi$ is unsuppressed relative to $\Upsilon \pi \pi$.
- Additional measurements in B*B and B*B* mode should be done
- Existence of other molecular states is predicted

Summary

arXiv:1103.3419

-First observation of $h_b(1P)$ and $h_b(2P)$ in $\Upsilon(5S) \rightarrow \pi^+\pi^- h_b$ Masses consistent with CoG of χ_{bJ} states

-First observation of two charged bottomonium-like resonances in 5 different final states:

 $h_b(1P)\pi^+\pi^-, h_b(2P)\pi^+\pi^-, \Upsilon(1S)\pi^+\pi^-, \Upsilon(2S)\pi^+\pi^-, \Upsilon(3S)\pi^+\pi^-$

[preliminary]

Z _b (10610)	M = 10608.1 ± 1.7 MeV Γ = 15.5± 2.4 MeV
Z _b (10650)	$M = 10653.3 \pm 1.5 MeV$ $\Gamma = 14.0 \pm 2.8 MeV$

-Angular analysis favors :J^P=1⁺; other J^P are disfavored.

-Z_b properties are consistent with the B*B and B*B* S-wave molecules .

Dalitz Plot

Fits to $MM(\pi^+\pi^-)$ spectra in $MM(\pi)$ bins

24

Calibration channels

$$\begin{split} \Upsilon(5S) &\to \Upsilon(\mathbf{nS}) \ \pi + \pi - \\ \Upsilon(\mathbf{nS}) \to \mu + \mu - \end{split} (n = 1, 2, 3) \end{split}$$

Results: Υ(**2S**)*π*⁺*π*⁻

Results: Υ(**2S**)*π*⁺*π*⁻

Expectations $\Upsilon(5S) \rightarrow Z_b \pi_1 \rightarrow [\Upsilon(2S) \pi_2] \pi_1$

neglect Z_b recoil motion ($\beta {<} 0.02 \Rightarrow$ very good approximation) also formulae for h_b are available

Consider 1D projections

 θ_1, θ_2 – polar angles of 1st and 2nd pions

 ϕ_{p} – angle btw planes defined by (1) π_{1} & Z axis, (2) π_{1} & π_{2} .

Interference terms vanish after integration over other angular variables \Rightarrow subtraction of non-resonant contribution is possible.

e⁺e⁻ hadronic cross-section

L = 711fb⁻¹ [×6 Υ (5S) sample]

No significant signal of $h_b(1P)$: $(34\pm20)\times10^3$ (1.7 σ)

 $\frac{\sigma[e^+e^- \to h_b(1P) \ \pi^+\pi^-] \ @ \ \Upsilon(4S)}{\sigma[e^+e^- \to h_b(1P) \ \pi^+\pi^-] \ @ \ \Upsilon(5S)} <0.28 \text{ at } 90\%\text{C.L.}$

 $\Rightarrow \Upsilon(4S)$ does not show anomalous properties

Systematics

	Polynomial	Fit	Signal	Selection
	order	range	shape	requirements
$N[h_b], 10^3$	± 2.4	± 3.6	$^{+1.2}_{-8.0}$	_
$M[h_b], \mathrm{MeV}/c^2$	$\pm.04$	$\pm.10$	$^{+0.04}_{-0.20}$	$+.20 \\30$
$N[h_b(2P)], 10^3$	± 2.2	± 2.6	+239.0	—
$M[h_b(2P)], \mathrm{MeV}/c^2$	$\pm.10$	$\pm .20$	$^{+1.0}_{-0.0}$	$\pm.08$

Results are stable

Significance w/ systematics

h _b (1P)	5.5σ
h _b (2P)	11.2σ

Confidence Levels of angular fits to $\Upsilon(5S) \rightarrow Z_{b}^{+} \pi^{-} \rightarrow [\mathbf{h}_{\mathbf{b}}(\mathbf{1P})\pi^{+}] \pi^{-} \text{ decay with hypothesis } \mathbf{1}^{+}$

	$\cos heta_1$	$\cos \theta_2$	$\cos \theta_{\pi\pi}$
$Z_b(10610)$	84%	37%	1.1%
$Z_b(10650)$	15%	63%	7.2%