Heavy-Quark Masses and Heavy-Meson Decay Constants from Borel Sum Rules in QCD

Dmitri Melikhov^{1,a,b,c}, Wolfgang Lucha^a, and Silvano Simula^d

^aHEPHY, Austrian Academy of Sciences, Nikolsdorfergasse 18, A-1050 Vienna, Austria
^bFaculty of Physics, University of Vienna, Boltzmanngasse 5, A-1090 Vienna, Austria
^cSINP, Moscow State University, 119991 Moscow, Russia
^dINFN, Sezione di Roma Tre, Via della Vasca Navale 84, I-00146 Roma, Italy

Slight sophistications of the QCD sum-rule formalism may have great impact on the reliability of predicted hadron observables, as exemplified for the case of heavy-meson decay constants.

Quark–Hadron Duality. The extraction of the decay constant f_P of any ground-state heavy pseudoscalar meson P from QCD sum rules [1–3] is a two-phase process: First, the operator product expansion (OPE) for the Borel-transformed correlation function of the two relevant pseudoscalar heavy-light currents has to be derived. Second, even if all parameters of this OPE were known exactly, the knowledge of merely *truncated* OPEs for correlators allows to extract bound-state features with only a limited accuracy, reflecting an intrinsic uncertainty of the QCD sum-rule formalism. Controlling this uncertainty poses a delicate challenge [4]. We consider mesons $P \equiv (Q \bar{q})$ of mass M_P composed of heavy quarks Q and light quarks \bar{q} . The *assumption* of *quark–hadron duality* entails a relation between the hadronic ground-state contribution and the QCD correlator truncated at a certain *effective continuum threshold* s_{eff}:

(1)
$$f_P^2 M_P^4 \exp(-M_P^2 \tau) = \Pi_{\text{dual}}(\tau, s_{\text{eff}}) \equiv \int_{(m_Q + m_q)^2}^{s_{\text{eff}}} ds \exp(-s \tau) \rho_{\text{pert}}(s) + \Pi_{\text{power}}(\tau) .$$

Obviously, in order to be able to extract f_P one has to develop a procedure determining s_{eff} . Borel transformations introduce a mass parameter \widetilde{M} , included here in the form $\tau \equiv 1/\widetilde{M}^2$. A crucial, albeit rather trivial, observation is that s_{eff} must be a function of τ . Otherwise, the two members of (1) exhibit different τ -behaviour. The *exact* effective continuum threshold, which would reproduce the *true* values of hadron mass and decay constant on the left-hand side of (1), is, clearly, not known. Therefore, our ideas of *extracting* hadron parameters from sum rules consist in attempting to obtain a reliable approximation to the exact threshold s_{eff} and to control the accuracy of this approximation. In a recent series of publications [5], we have constructed all procedures, techniques, and algorithms required to achieve this goal: With our concept of $s_{\text{eff}}(\tau)$, we define dual mass M_{dual} and dual decay constant f_{dual} of P by

$$M_{\rm dual}^2(\tau) \equiv -\frac{\rm d}{{\rm d}\tau} \log \Pi_{\rm dual}(\tau, s_{\rm eff}(\tau)) , \qquad f_{\rm dual}^2(\tau) \equiv M_P^{-4} \exp(M_P^2 \tau) \Pi_{\rm dual}(\tau, s_{\rm eff}(\tau)) .$$

¹dmitri_melikhov@gmx.de

If the ground-state mass' actual value M_P is known, the deviation of our dual ground-state mass M_{dual} from this M_P indicates the amount of excited-state contributions picked up by our dual correlator $\Pi_{\text{dual}}(\tau, s_{\text{eff}}(\tau))$. Assuming specific Ansätze for our function $s_{\text{eff}}(\tau)$ and requiring least deviation of our M_{dual} from the true M_P in the range of admissible values of the Borel parameter τ leads to a variational solution for the effective threshold. With $s_{\rm eff}(\tau)$ at hand, we find the *P*-meson's decay constant from the second of the above dual relations. The traditional *assumption* for the effective threshold is that it is a (τ -independent) constant. In addition to this very crude approximation, we consider for $s_{\text{eff}}(\tau)$ also polynomials in τ . It is easy to imagine that a τ -dependent threshold greatly facilitates reproducing the true mass value M_P . This implies that a dual correlator with τ -dependent threshold isolates the ground state to much higher extent and is less plagued by excited-state contamination than a dual correlator with the conventional, but naïve, τ -independent threshold. Consequently, the accuracies of extracted hadron observables are drastically improved. Recent experience from various quantum-mechanical test grounds reveals that the band of results computed from linear, quadratic, and cubic Ansätze for $s_{\text{eff}}(\tau)$ encompasses the exact f_P value [5] and that the extraction procedures in quantum mechanics and in QCD are (even quantitatively) very similar [6]. For all the details of our improved sum-rule approach, consult Refs. [2–7].

OPE and Heavy-Quark Mass Scheme. A close inspection shows that for both heavy-light correlators and resulting decay constants the choice of the precise mass scheme adopted for defining the heavy-quark mass is crucial. The OPE for the correlator (1) to three-loop order was derived in terms of the heavy-quark *pole mass* in [8]. An alternative is to reorganize the perturbative expansions in terms of the heavy-quark *running* \overline{MS} mass [9]. Figure 1 presents the *B*-meson decay constant f_B resulting from both choices. In each case, a *constant* effective threshold [differing, of course, for pole (s_0) and \overline{MS} ($\overline{s_0}$) mass scheme] is fixed by requiring maximum stability of the f_B value obtained. From this exercise we gain important insights:

(a) In the pole-mass scheme, the perturbative series for the decay constant shows no sign of convergence. The separate contributions of LO, NLO, and NNLO terms are of similar size. Accordingly, the pole-mass-scheme result for f_B significantly underestimates its true value.

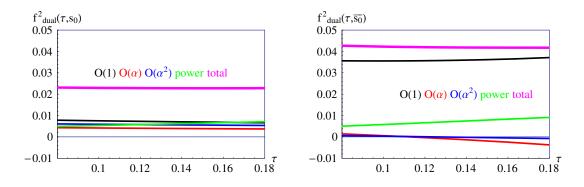


Figure 1: Dual decay constants f_{dual} of the *B* meson extracted, for constant thresholds $\overline{s_0}$, from the correlator (1) expressed in terms of the *b*-quark's pole (left) and \overline{MS} (right) mass.

(b) Reorganizing the perturbative series in terms of the heavy-quark MS mass generates an impressively distinct *hierarchy of the perturbative contributions*. Our dual decay constant f_{dual} obtained using the $\overline{\text{MS}}$ scheme proves to be some 40% larger than in the pole-mass scheme.

(c) Interestingly, in *both* mass schemes the decay constant exhibits perfect stability in a wide range of the Borel parameter τ . This clearly tells us that mere Borel stability is not sufficient to ensure the reliability of a sum-rule extraction of bound-state features. Repeatedly [4], we tried to draw the attention of sum-rule practitioners to this observation; nevertheless, some authors seem to be content with Borel stability as a proof of the trustability of their findings.

In view of the above, we adopt the OPE expressed in terms of running $\overline{\text{MS}}$ quark masses [9].

Decay Constants of *D* **and** D_s [2,3]. Straightforward application of our sum-rule algorithm yields, as our predictions for the decay constants of the charmed pseudoscalar mesons $D_{(s)}$,

$$f_D = (206.2 \pm 7.3_{(OPE)} \pm 5.1_{(syst)}) \text{ MeV}$$
,
 $f_{D_s} = (245.3 \pm 15.7_{(OPE)} \pm 4.5_{(syst)}) \text{ MeV}$.

Herein, the OPE-related errors are computed by bootstrap studies allowing the parameters induced by QCD (i.e., quark masses, α_s , and condensates) to vary in their respective ranges. We observe perfect agreement of our results with the corresponding lattice QCD outcomes. Let us emphasize that the τ -dependent effective threshold constitutes *the* crucial ingredient for a successful prediction of decay constants of charmed heavy mesons by the sum rule (1). Standard τ -independent approximations entail a much lower value for the *D*-meson decay constant, *f*_D, that resides rather far from both the experimental data *and* the lattice findings.

Decay Constants of *B* and *B_s* [2]. Our QCD sum-rule results for the decay constants $f_{B_{(s)}}$ of the pseudoscalar beauty mesons $B_{(s)}$ turn out to be extremely sensitive to the input value of the *b*-quark mass; for instance, the *b*-quark's $\overline{\text{MS}}$ -mass range $\overline{m}_b(\overline{m}_b) = (4.163 \pm 0.016)$ GeV [10] gives results that are barely compatible with recent lattice computations of these decay constants. However, inverting the logic by requiring our sum-rule result for f_B to match the average of these lattice calculations provides the very precise value of the *b*-quark $\overline{\text{MS}}$ mass

$$\overline{m}_b(\overline{m}_b) = (4.245 \pm 0.025) \text{ GeV}.$$

The corresponding estimates for f_B and f_{B_s} emerging within our sum-rule prescriptions are

$$f_B = (193.4 \pm 12.3_{(OPE)} \pm 4.3_{(syst)}) \text{ MeV}$$
,
 $f_{B_s} = (232.5 \pm 18.6_{(OPE)} \pm 2.4_{(syst)}) \text{ MeV}$.

Summary and Conclusions.

1. The τ -dependence of effective thresholds emerges naturally when one attempts to render the duality relation exact. Let us emphasize two facts: (a) In principle, this τ -dependence is *not* in conflict with the properties of quantum field theories. (b) Our analysis of $D_{(s)}$ mesons indicates that it will indeed raise the quality of the resulting sum-rule predictions *decisively*.

2. Our study of *charmed mesons* clearly demonstrates that using Borel-parameter-dependent thresholds leads to lots of essential improvements: (i) The accuracy of sum-rule predictions for decay constants is significantly increased. (ii) It has become possible to extract a realistic systematic error and to diminish it to the level of a few percent. (iii) Our prescription brings the QCD sum-rule approach into perfect agreement with both lattice QCD and experiment.

3. The *beauty-meson* decay constants $f_{B_{(s)}}$ are extremely sensitive to the choice of the *b*-quark mass: Regarding this as a kind of serendipity and matching our QCD sum-rule outcome for f_B to the corresponding average of lattice evaluations enables us to arrive at a rather precise estimate of $\overline{m}_b(\overline{m}_b)$ in good agreement with several lattice results but which, unfortunately, has no overlap with a recent, rather accurate determination [10]; for details, consult Ref. [2].

Acknowledgments

DM is supported by the Austrian Science Fund (FWF), project no. P22843.

References

- [1] M. A. Shifman, A. I. Vainshtein, and V. I. Zakharov, Nucl. Phys. B 147, 385 (1979).
- [2] W. Lucha, D. Melikhov, and S. Simula, J. Phys. G: Nucl. Part. Phys. 38, 105002 (2011).
- [3] W. Lucha, D. Melikhov, and S. Simula, Phys. Lett. B **701**, 82 (2011); arXiv:1108.0844 [hep-ph].
- [4] W. Lucha, D. Melikhov, and S. Simula, Phys. Rev. D 76, 036002 (2007); Phys. Lett. B 657, 148 (2007); Phys. Atom. Nucl. 71, 1461 (2008); Phys. Lett. B 671, 445 (2009); arXiv:1107. 1848 [hep-ph]; D. Melikhov, Phys. Lett. B 671, 450 (2009).
- [5] W. Lucha, D. Melikhov, and S. Simula, Phys. Rev. D 79, 096011 (2009); J. Phys. G: Nucl. Part. Phys. 37, 035003 (2010); W. Lucha, D. Melikhov, H. Sazdjian, and S. Simula, Phys. Rev. D 80, 114028 (2009).
- [6] W. Lucha, D. Melikhov, and S. Simula, Phys. Lett. B 687, 48 (2010); Phys. Atom. Nucl. 73, 1770 (2010); in *QCD@Work 2010*, eds. L. Angelini *et al.*, AIP Conf. Proc. 1317 (AIP, Melville, New York, 2010), p. 316, arXiv:1008.0167 [hep-ph].
- [7] W. Lucha, D. Melikhov, and S. Simula, in *QCD@Work 2010*, eds. L. Angelini *et al.*, AIP Conf. Proc. **1317** (AIP, Melville, New York, 2010), p. 310, arXiv:1008.3129 [hep-ph]; PoS (ICHEP 2010) 210; PoS (QFTHEP2010) 058.
- [8] K. G. Chetyrkin and M. Steinhauser, Phys. Lett. B 502, 104 (2001); Eur. Phys. J. C 21, 319 (2001).

- [9] M. Jamin and B. O. Lange, Phys. Rev. D 65, 056005 (2002).
- [10] K. G. Chetyrkin et al., Phys. Rev. D 80, 074010 (2009).