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Revisiting the relevance of local duality for the pion elastic form factor gives rise to optimism.

Recently, several analyses of the pion form factor FπpQ2q at momentum transfer Q2 around
Q2 « 4´ 50 GeV2 have appeared [1] which claim that FπpQ2q remains much larger than the
pQCD result even at Q2 « 50 GeV2 (see Fig. 1a). These studies obtain a much larger FπpQ2q

than our result from the local-duality sum rule [2]. They imply that the LD limit is strongly
violated even at rather large Q2. QCD sum rules utilizing nonlocal condensates [3] arrive at
more moderate claims but also observe a large local-duality violation at Q2 “ 10´ 20 GeV2.
A careful inspection reveals that all these analyses involve explicit or implicit assumptions.
Consequently, in a recent study [4] we scrutinized the LD model and its accuracy, by taking
advantage of the case of quantum mechanics: there hadronic features, such as form factors,
may be found independently of the sum-rule method by solving the Schrödinger equation.

1 Local-Duality Sum Rules

Local-duality (LD) sum rules [6] are nothing but dispersive N-point sum rules in the limit of
infinitely large Borel-mass parameter ĂM, that is, for τ ” 1{ĂM2 Ñ 0. In this limit, all power
corrections vanish. The assumption of quark–hadron duality claims that, above some effective
continuum threshold seff, the contributions of excited and continuum states at hadron level
are dual to the high-energy region of the perturbative diagrams arising from QCD. Under
this assumption, in the chiral limit the LD sum rules of interest for the present analysis read

(1) f 2
π “

seff
ż

0

ds ρpertpsq , FπpQ2q f 2
π “

seffpQq
ż

0

seffpQq
ż

0

ds1 ds2 ∆pertps1, s2, Qq .

The spectral densities ρpertpsq and ∆pertps1, s2, Qq are given by QCD perturbation theory [7].
All details of nonperturbative dynamics are encoded in the effective continuum thresholds
seff and seffpQq. Fixing these, pion decay constant fπ and form factor FπpQ2q can be derived.
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Figure 1: Dependence of both pion elastic form factor FπpQ2q (a) and effective continuum
threshold seffpQq (b) on the momentum transfer Q. In (b) the red line is the exact threshold
seffpQq as reconstructed from experimental FπpQ2 ď 2.5 GeV2q data [5], the blue refers to
a sum-rule study using nonlocal condensates [3], the black is our LD model (2) for seffpQq.

One should be aware that any effective continuum threshold is different from the physical
continuum threshold: the latter is a constant determined by the masses of the lowest-lying
hadronic excitations whereas the effective continuum threshold is just an ingredient of the
sum-rule method related to a specific implementation of quark–hadron duality. Therefore,
effective thresholds are not constant but depend on the external kinematic variables [8, 9].

Taking into account the properties of the perturbative 2- and 3-point spectral functions, one
may formulate an approximate LD model for the effective threshold seffpQq: our model is based
on some smooth interpolation between the behaviour of seffpQq for Q Ñ 0, determined by
a Ward identity, and for Q Ñ8, determined by factorization properties of ∆pertps1, s2, Qq.
Remembering the well-measured pion elastic form factor in the region near Q2 « 2.5 GeV2,
we propose [4], in terms of the strong coupling constant αspQ2q, the simple parametrization

(2) seffpQq “
4π2 f 2

π

1` αsp0q{π

„

1` tanh
ˆ

Q2

Q2
0

˙

αsp0q
π



, Q2
0 “ 2.02 GeV2 .

For small Q2, following [2] we assume a freezing of αspQ2q. Note that seffpQq approaches its
LD limit, viz., seff “ 4π2 f 2

π, already in the region Q2 ą 4´ 5 GeV2 (Fig. 1b). Accordingly,
the only essential nonperturbative input for the LD model (2) is the pion decay constant fπ.

Figure 1a depicts the corresponding prediction for the pion elastic form factor FπpQ2q. Our
LD model provides a perfect description of all the available experimental data in the region
Q2 “ 1´ 2.5 GeV2. For Q2 ě 3´ 4 GeV2, the LD model reproduces well all the data except
for the single point Q2 “ 10 GeV2; there our prediction is off the actual experimental value
(which, in any case, is affected by a rather large error) by roughly two standard deviations.
Interestingly enough, in the range Q2 ě 3´ 4 GeV2 the LD model yields significantly lower
predictions than the findings of the different theoretical approaches presented in Refs. [1, 3].
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A closer inspection of Fig. 1 easily reveals that it is virtually impossible to construct models
compatible with all experimental findings in Q2 “ 2.5´ 10 GeV2: those approaches that hit
the data at Q2 “ 10 GeV2 overestimate the data points of better quality at Q2 « 2´ 4 GeV2.

By construction, the LD model (2) is but an approximate model which involves too few free
parameters to be able to take into account some subtle details of the confinement dynamics.
Nevertheless, we would like to estimate the uncertainties of hadron-parameter predictions
we might expect for the momentum-transfer range Q2 ě 3´ 4 GeV2. The obvious place to
study this and to get an idea of the order of magnitude of the errors is quantum mechanics:
there solving Schrödinger’s equation numerically [10] gives the exact bound-state features.

2 Local-Duality Effective-Threshold Model in Quantum Mechanics

The main ingredient that constrains the formulation of our LD model (2) is the factorization
of hard form factors. Consequently, this model may be tested in quantum mechanics (QM)
for potentials containing both Coulomb and confining interactions. For definiteness, we [4]
consider a set of power-law confining potentials: Vconfprq9rn, n “ 2, 1, 1

2 . We adopt model
parameters suitable for hadron physics and fix the strengths of all our Vconfprq such that for
each of them the Schrödinger equation yields the same value ψp0q of the configuration-space
bound-state wave function ψprq at the origin and hence the same QM LD threshold model.

We identified an important universal behaviour, which does not depend on the details of the
confining interaction: the accuracy of the LD model for both effective continuum threshold
and elastic form factor increases with Q in the range Q ě 2 GeV. Accordingly, we may infer
that, if in the region Q2 « 4´ 8 GeV2 the LD setup provides a satisfactory description of the
experimental data, the accuracy of our predictions will not be worse for larger values of Q2.

3 Summary, Conclusions, and Outlook

We investigated the pion elastic form factor FπpQ2q by means of an LD model, which can be
formulated in any theory where hard exclusive amplitudes satisfy a factorization theorem
(in essence, any theory where the interactions behave Coulomb-like at small distances and
confining at large distances). Figure 1 and our QM studies lead us to our main conclusions:

1. For Q2 ď 4 GeV2, our exact effective threshold seffpQq exhibits a rapid variation with Q.
This observation implies that the accuracy of the LD model for these momentum transfers
depends on subtle details of the confining interactions and cannot be predicted in advance.

2. For Q2 ě 4 GeV2, irrespective of any details of the underlying confining interactions, the
maximum deviations of the LD-model predictions from the exact elastic form factor occur in
the range Q2 « 4´ 8 GeV2. For Q2 beyond this interval, our LD model’s accuracy increases
very fast. Our QM toy model with power-law potentials shows that, for arbitrary confining
interactions, our LD model entails rather accurate numerical results for Q2 ě 20´ 30 GeV2.
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3. Very precise data [5] on FπpQ2q indicate that the LD limit seffp8q “ 4π2 f 2
π of the effective

threshold is reached already at comparatively low values Q2 “ 5´ 6 GeV2; therefore, large
deviations from the LD limit at Q2 “ 20´ 50 GeV2, as obtained in [1], appear to us unlikely.
Moreover, we expect the pion form factor at Q2 “ 10´ 20 GeV2 to be considerably lower
than the prediction of an approach based on a sum rule involving nonlocal condensates [3].

Our analysis is not meant to constitute a proof of but rather to provide an argument for the
accuracy of the LD model in QCD and the expected behaviour of the pion elastic form factor
at large Q2. Thus, the accurate measurement of Fπ in the region Q2 “ 4´ 10 GeV2 will have
important implications for the behaviour of Fπ at larger Q2, up to asymptotically large Q2.
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