Internal structure of the $\Lambda(1405)$ resonance probed in chiral unitary amplitude

Takayasu Sekihara^{*a*}, T. Hyodo^{*a*}, and D. Jido^{*b*}

^{*a}Department of Physics, Tokyo Institute of Technology, Tokyo 152-8551, Japan* ^{*b*}Yukawa Institute for Theoretical Physics, Kyoto University, Kyoto 606-8502, Japan</sup>

The internal structure of the resonant $\Lambda(1405)$ state is investigated based on meson-baryon coupled-channels chiral dynamics. We evaluate $\Lambda(1405)$ form factors which are extracted from current-coupled scattering amplitudes in meson-baryon degrees of freedom. Using several probe currents and channel decomposition, we find that the resonant $\Lambda(1405)$ state is dominantly composed of widely spread \overline{K} around N, with escaping $\pi\Sigma$ component.

1 Introduction

There are hadrons which are expected to have exotic structures, *e.g.*, hadronic molecules, and it is one of the important issues in hadron physics to clarify their structures. A classical example is the excited baryon $\Lambda(1405)$, which has been considered as an *s*-wave $\overline{K}N$ quasibound state [1]. It is also suggested by the modern theoretical approach based on the chiral dynamics within the unitary framework (the chiral unitary approach) [2–7] that $\Lambda(1405)$ is dynamically generated in the meson-baryon scattering, in addition to the good reproduction of the low-energy K^-p cross sections and the $\Lambda(1405)$ peak in $\pi\Sigma$ mass spectrum. Moreover, the chiral unitary approach predicts double-pole structure for $\Lambda(1405)$ [4,6] and one of the poles is expected to originate from the $\overline{K}N$ bound state [8, 9]. Some approaches for the survey on the $\Lambda(1405)$ structure in experiments have been proposed, e.g., in Refs. [10, 11].

If $\Lambda(1405)$ is dominated by the $\overline{K}N$ quasibound state with a small binding energy, one can expect that $\Lambda(1405)$ has a larger size than typical ground state baryons dominated by genuine *qqq* components. Motivated by this expectation, in Ref. [12] we have investigated the internal structure of the resonant $\Lambda(1405)$ state by evaluating density distributions obtained from the form factors on the $\Lambda(1405)$ pole originating from the $\overline{K}N$ bound state. In our study the $\Lambda(1405)$ form factors are directly extracted from the current-coupled scattering amplitude, which involves a response of $\Lambda(1405)$ to the external current. The current-coupled scattering amplitude is evaluated in a charge conserved way by considering current couplings to the constituent hadrons inside $\Lambda(1405)$. Here we note that the wave functions and form factors of $\Lambda(1405)$ were studied also in Ref. [13] in a cut-off scheme within chiral unitary approach, which results were not significantly different from ours, except for the high momentum region compared to the cut-off.

2 Internal structure of $\Lambda(1405)$

In the chiral unitary approach, the meson-baryon scattering amplitude T_{ij} with channel indices *i* and *j* is obtained by a coupled-channels equation,

(1)
$$T_{ij}(\sqrt{s}) = V_{ij}(\sqrt{s}) + \sum_{k} V_{ik}(\sqrt{s})G_k(\sqrt{s})T_{kj}(\sqrt{s}),$$

with the interaction kernel V_{ij} given by chiral perturbation theory, a meson-baryon loop integral G_k , and the center-of-mass energy \sqrt{s} . The obtained amplitude contains dynamically generated $\Lambda(1405)$ in *s* wave. Next, in order to observe response of $\Lambda(1405)$ to the conserved probe current in the chiral unitary approach, we evaluate current-coupled scattering amplitude $T^{\mu}_{\gamma ij}$ in a charge conserved way, considering current couplings to the constituent hadrons as [12, 14]:

(2)
$$T^{\mu}_{\gamma i j}(\sqrt{s'}, \sqrt{s}; Q^2) = T^{\mu}_{\gamma(1) i j} + T^{\mu}_{\gamma(2) i j} + T^{\mu}_{\gamma(3) i j}$$

with the squared current momentum Q^2 and

(3)
$$T^{\mu}_{\gamma(1)ij} = \sum_{k} T_{ik} D^{\mu}_{\mathbf{M}_{k}} T_{kj}, \quad T^{\mu}_{\gamma(2)ij} = \sum_{k} T_{ik} D^{\mu}_{\mathbf{B}_{k}} T_{kj}, \quad T^{\mu}_{\gamma(3)ij} = \sum_{k,l} T_{ik} G_{k} \Gamma^{\mu}_{kl} G_{l} T_{lj},$$

where D_{M_k} and D_{B_k} are respectively loop integrals with the current couplings to the meson and baryon and Γ_{ij} represents $MBM'B'\gamma$ vertex. Then the $\Lambda(1405)$ form factor, $F^{\mu}(Q^2)$, can be extracted by [12, 15],

(4)
$$F^{\mu}(Q^{2}) = -\frac{(\sqrt{s'} - Z_{R})T^{\mu}_{\gamma i j}(\sqrt{s'}, \sqrt{s}; Q^{2})}{T_{i j}(\sqrt{s})} \bigg|_{\sqrt{s} \to Z_{R}} \bigg|_{\sqrt{s'} \to Z_{R}},$$

where Z_R is the $\Lambda(1405)$ pole position. Here we note that we have following relations:

(5)
$$\hat{Q}\frac{dG_k}{d\sqrt{s}} = (D^0_{M_k} + D^0_{B_k})|_{Q^2 = 0}, \quad \hat{Q}\frac{dV_{ij}}{d\sqrt{s}} = \Gamma^0_{ij}|_{Q^2 = 0},$$

with \hat{Q} being the charge of $\Lambda(1405)$ with respect to the probe current. These are the Ward-Takahashi identity for the two-body free propagator G_k and the elementary vertex V_{ij} .

Now let us show our results for the internal structure of the resonant $\Lambda(1405)$. First, we write a normalization relation for the baryonic $[F_B(Q^2)]$ and strangeness $[F_S(Q^2)]$ form factors of $\Lambda(1405)$ proved in Ref. [12],

(6)
$$F_{\rm B}(Q^2=0) = -F_{\rm S}(Q^2=0) = -\sum_{i,j} g_i g_j \left(\frac{dG_i}{d\sqrt{s}} \delta_{ij} + G_i \frac{dV_{ij}}{d\sqrt{s}} G_j \right) \Big|_{\sqrt{s} \to Z_{\rm R}} = 1,$$

where $g_i g_j$ is a residue of T_{ij} at the $\Lambda(1405)$ pole position and $dG_i/d\sqrt{s} (dV_{ij}/d\sqrt{s})$ term comes from $D_{M_i}^0 + D_{B_i}^0 (\Gamma_{ij}^0)$ at $Q^2 = 0$. This relation corresponds to the Ward identity for the vertex

Figure 1: Electric (P_E , left), baryonic and strangeness (P_B and P_S , right) density distributions of $\Lambda(1405)$ in each component. Here P_E is shown in particle basis whereas P_B and P_S are in isospin basis [12].

and wave-function renormalization factors, and this originates from that we evaluate $T^{\mu}_{\gamma ij}$ in a charge conserved way with current couplings satisfying Ward-Takahashi identity (5). With this relation, we can pin down the dominant component of the $\Lambda(1405)$ structure by decomposing the summation in Eq. (6). As a result, we find that contribution from the $\overline{K}N(I = 0)$ channel ($= -g^2_{\overline{K}N} dG_{\overline{K}N}/d\sqrt{s}$) is 0.994 + 0.048i whereas contributions from other channels and the vertex term ($= -\sum_{i,j} g_i G_i dV_{ij}/d\sqrt{s}G_j g_j$) are negligibly small [12]. Therefore, this result indicates that the $\overline{K}N(I = 0)$ channel generates more than 99% of the $\Lambda(1405)$ charge, which is consistent with the $\overline{K}N$ quasibound state picture for $\Lambda(1405)$.

Next we show the electric, baryonic, and opposite-sign strangeness density distributions (P_E, P_B, and $-P_S$, respectively) of $\Lambda(1405)$ in each component in Fig. 1. From P_E, we can see that the negative (positive) charge distribution appears in $\Lambda(1405)$ due to the existence of lighter K^- (heavier p) in the outside (inside) region, bearing in mind the $\overline{K}N$ dominance for $\Lambda(1405)$. Also it is interesting to see the dumping oscillation in $\pi^+\Sigma^-$ (equivalently $\pi^-\Sigma^+$ with the opposite sign) component in P_E as the decay of the system, although this is not observed in the total P_E due to the cancellation of $\pi^+\Sigma^-$ and $\pi^-\Sigma^+$ components. On the other hand, P_B and P_S indicate that inside $\Lambda(1405)$ the \overline{K} component has longer tail than the N component and \overline{K} distribution largely exceeds typical hadronic size ≤ 1 fm, bearing in mind that the baryonic (strangeness) current probes the $N(\overline{K})$ distribution inside $\Lambda(1405)$.

3 Summary

We have investigated the internal structure of the resonant $\Lambda(1405)$ state in the chiral unitary approach, in which $\Lambda(1405)$ is dynamically generated in meson-baryon coupled-channels chiral dynamics. Probing $\Lambda(1405)$ with conserved current in a charge conserved way, we

have observed that $\overline{K}N$ component gives more than 99% of the total $\Lambda(1405)$ charge. The electric density distribution indicates that inside $\Lambda(1405)$ lighter K^- (heavier p) exists in the outside (inside) region and the escaping $\pi\Sigma$ component appears as the decay mode of $\Lambda(1405)$. Also from the baryonic and strangeness density distributions we have found that inside $\Lambda(1405)$ the \overline{K} component has longer tail than the N component and \overline{K} distribution largely exceeds typical hadronic size $\lesssim 1$ fm.

This work is partly supported by the Grand-in-Aid for Scientific Research from MEXT and JSPS (No. 21840026, 22105507, 22740161, and 22-3389).

References

- [1] R. H. Dalitz and S. F. Tuan, Annals Phys. 10, 307 (1960).
- [2] N. Kaiser, P. B. Siegel and W. Weise, Nucl. Phys. A 594, 325 (1995).
- [3] E. Oset and A. Ramos, Nucl. Phys. A 635, 99 (1998).
- [4] J. A. Oller and U. G. Meissner, Phys. Lett. B 500, 263 (2001).
- [5] M. F. M. Lutz and E. E. Kolomeitsev, Nucl. Phys. A 700, 193 (2002).
- [6] D. Jido, J. A. Oller, E. Oset, A. Ramos and U. G. Meissner, Nucl. Phys. A 725, 181 (2003).
- [7] T. Hyodo and D. Jido, Prog. Part. Nucl. Phys. (2011), doi:10.1016/j.ppnp.2011.07.002.
- [8] T. Hyodo and W. Weise, Phys. Rev. C 77, 035204 (2008).
- [9] T. Hyodo, D. Jido and A. Hosaka, Phys. Rev. C 78, 025203 (2008).
- [10] D. Jido, E. Oset and T. Sekihara, Eur. Phys. J. A 42, 257 (2009); *ibid.* 47, 42 (2011).
- [11] S. Cho *et al.* [ExHIC Collaboration], Phys. Rev. Lett. **106**, 212001 (2011); arXiv:1107.1302 [nucl-th].
- [12] T. Sekihara, T. Hyodo and D. Jido, Phys. Lett. B 669, 133 (2008); Phys. Rev. C 83, 055202 (2011).
- [13] J. Yamagata-Sekihara, J. Nieves and E. Oset, Phys. Rev. D 83, 014003 (2011).
- [14] B. Borasoy, P. C. Bruns, U. G. Meissner and R. Nissler, Phys. Rev. C 72, 065201 (2005).
- [15] D. Jido, A. Hosaka, J. C. Nacher, E. Oset and A. Ramos, Phys. Rev. C 66, 025203 (2002).