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We develop a scheme for the extraction of the properties of the scalar mesons f0p600q, f0p980q,

and a0p980q from lattice QCD data. This scheme is based on a two-channel chiral unitary

approach with fully relativistic propagators in a finite volume. In order to discuss the feasibility

of finding the mass and width of the scalar resonances, we analyze synthetic lattice data with

a fixed error assigned, and show that the framework can be indeed used for an accurate

determination of resonance pole positions in the multi-channel scattering.

1 Introduction

We present a method to calculate energy levels for ππ and KK in a finite volume using for
this purpose the chiral unitary approach that produces the f0p600q, f0p980q, and a0p980q
resonances as dynamically generated in the continuum. After this we face the inverse
problem: assuming that the levels obtained in the finite box are lattice data we determine
the phase shifts in the continuum and extract the resonance properties [1].

2 The formalism

In the chiral unitary approach we obtain the T-matrix for the ππ and KK coupled channels
by means of the Bethe Salpeter equation

(1) T “ r1´VGs´1V
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where V is the 2x2 matrix of the transition potential and G, a diagonal matrix is the loop
function of the two meson propagators

Gj “

|~q|ăqmax
ż

d3~q
p2πq3

1
2ω1p~qqω2p~qq

ω1p~qq `ω2p~qq
E2 ´ pω1p~qq `ω2p~qqq2 ` iε

,

ω1,2p~qq “

b

m2
1,2 `~q2 .(2)

In a box of length L the energy levels are given by the poles of the T matrix of eq. (1)
substituting G by G̃ given by

G̃j “
1
L3

|~q|ăqmax
ÿ

~q

1
2ω1p~qqω2p~qq

ω1p~qq `ω2p~qq
E2 ´ pω1p~qq `ω2p~qqq2

,

~q “
2π

L
~n, ~n P Z3 .(3)

As we can see, all we have done is to replace the integral by a discrete sum over the free
eigenvalues of the box given by the periodic boundary conditions.

In one channel, the poles of T in the box are obtained when

(4) V´1pEq ´ G̃pEq “ 0 .

Then the T matrix in the continuum for the energies eigenvalues of the box can be obtained
by means of

(5) TpEq “
´

V´1pEq ´ GpEq
¯´1

“
`

G̃pEq ´ GpEq
˘´1 .

By changing the value of L one can achieve that different energies appear as eigenvalues
of the box and then obtain the T matrix in the continuum for any desired energy, via eq.
(5). As shown in [1] this equation is nothing else than Lüscher’s formula [2]. However,
for smaller values of L, differences emerge which are due to the presence of the relativistic
propagators in the loops (see Ref. [1] for a detailed discussion on this issue).

The main purpose of [1] was to extend the idea of Lüscher to two channels, following the
lines of [3]. For this purpose we propose several methods in [1], but we will outline only
one here, which is practical and at reach by present lattice calculations.

Let us assume that we have the lattice data of fig. 1, which have been obtained from the
chiral unitary approach in the finite box, and we want to obtain the ππ and KK phase shifts
in the continuum from these data. For this purpose we take the levels 2 and 3 of Fig. 1
and a few energies from them, associating an error of 10 MeV to these energies. Then we
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Figure 1: Energy levels as functions of the cubic box size L, derived from the chiral unitary
approach of Ref. [4] and using G̃ from Eq. (3).

make a fit to these data assuming that we have a potential, suggested by the chiral unitary
approach, of the type

(6) Vij “ aij ` bijps´ 4M2
Kq .

The levels in the box with two channels are obtained from the poles of the T matrix which
come from the condition that the determinant of (1´VG) is zero,

(7) detp1´VG̃q “ 1´V11G̃1 ´V22G̃2 ` pV11V22 ´V2
12qG̃1G̃2 “ 0 .

As one can see in fig. 2, the method shows that one can reconstruct the phase shifts in the
continuum with an acceptable accuracy and from there the f0p980q resonance. The same
can be done for the a0p980q and the f0p600q. As lessons that one draws from the work we
can say that the two channel method is necessary for the description of the f0p980q and
a0p980q resonances, the analysis with only the ππ channel leading to inaccurate results and
incorrect conclusions. Another lesson learned is that the flattening of a level in the box as a
funtion of L is not a guarantee that this energy corresponds to a resonance. The flattening
can occur around the threshold of a new channel without it corresponding to a resonance
in the continuum. The method developed in [1] should be very helpful in the analysis of
future lattice data for groups looking for hadron spectra from lattice QCD [5].
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Figure 2: Left: Generated data points (10 MeV error, 13 points) with periodic b.c.; Fits
that fulfill the χ2

best ` 1 criterion are also shown (bands). Right: Extracted phase shifts
corresponding to the set shown in the figure to the left. Dashed line: The calculated phase
shifts by using the approach of Ref. [4]; Bands: Reconstruction of these phase shift.
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