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This report reviews recent theory progress in the field of heavy quarkonium and open heavy

flavour production calculations.

1 Heavy Quarkonium Production

1.1 Introduction

Heavy quarkonia are bound states of a heavy quark and its antiquark. There are charmonia
and bottomonia. According to the factorization theorem of nonrelativistic QCD (NRQCD)
[1], the cross section to produce a heavy quarkonium H factorizes according to

(1) σpab Ñ H ` Xq “
ÿ

n
σpab Ñ ccrns ` XqxOHrnsy,

where the σpab Ñ ccrns ` Xq are perturbatively calculated short distance cross sections
describing the production of a heavy quark pair (here cc) in an intermediate Fock state n,
which does not have to be color neutral. The xOHrnsy are nonperturbative long distance
matrix elements (LDMEs) extracted from experiment and describing the transition of that
intermediate cc state into the physical H via soft gluon radiation. NRQCD predicts each of
the LDMEs to scale with a definite power of the relative heavy quark velocity v ! 1, which
serves as an additional expansion parameter besides αs: In case of H “ J{ψ, the leading
order contribution in the v expansion stems from n “ 3Sr1s1 and equals the traditional color
singlet model (CSM) prediction, while the leading relativistic corrections are made up
by the 1Sr8s0 , 3Sr8s1 , and 3Pr8sJ states. The upper index “8” stands for color octet (CO), and
these contributions are usually just called the color octet contributions. The CSM alone
is theoretically incomplete due to uncancelled infrared divergences in the case of p wave
quarkonia. On the other hand, however, the validity of the NRQCD factorization and the
universality of the LDMEs are still not proven and subject to dispute. Most of the work
reviewed in the following therefore just aims at testing them.
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1.2 NLO calculations of color octet contributions

The calculation of next-to-leading order (NLO) corrections to the short distance cross
sections of the intermediate CO states, especially to the 3Pr8sJ states, have proven challenging.
But as for unpolarized J{ψ production, up to now they have been calculated for all relevant
collision processes. The 2 Ñ 1 processes for photo- and hadroproduction have already
been calculated in 1998 [2]. Inclusive production in direct two photon collisions followed
in 2005 [3], in direct photoproduction [4] and electron-positron scattering neglecting the
small 3Sr8s1 contribution [5] in 2009. The hadroproduction calculations [6] were still missing
the 3Pr8sJ contributions. Full calculations involving all CO states followed in 2010 with
two independent works [7, 8]. The missing pieces of single and double resolved two
photon scattering, resolved photoproduction and the 3Sr8s1 contributions of electron-positron
scattering were finally presented in 2011 [9].

The two hadroproduction works [7,8] initially stirred some confusion, because the extracted
CO LDMEs seem incompatible although the short distance cross sections agree within the
expected numerical uncertainties. That difference is mainly due to the fact that in [8] a
combined fit to the transverse momentum pT distributions in H1 HERA photoproduction
and CDF Tevatron hadroproduction data was performed, while in [7] a Tevatron-only fit
was performed. When fitting to hadroproduction data alone, the fit is unconstrained, so only
two linear combinations of the CO LDMEs can be extracted in [7], and the fit results depend
strongly on parameters like the lower cut on pT. But when both groups perform the fit in
the same way, meaning doing a three-parameter fit neglecting feed-down contributions like
in [8], but fitting only the seven data points from the CDF Tevatron run 2 measurement [10]
with pT ą 7 GeV like in [7], the fit results do agree within the fit errors. So there is no
obvious inconsistency between the two works.

1.3 Global fit of J/ψ CO LDMEs to unpolarized production data

In [9] a global NLO fit of the CO LDMEs to 194 data points of inclusive unpolarized J{ψ
production from 10 different experiments has been performed, see figure 1 and table 1.
This extends the previous fit [8] mentioned in the last section by including a lot more
photoproduction and hadroproduction data and additionally including data from two-
photon collisions measured by DELPHI [16] and electron-positron collisions measured by
BELLE [13]. The new ingredients do not alter the fit values much, but the fit errors are
strongly reduced. The reason is that in order to constrain the fit, input from basically just
one photoproduction and one hadroproduction experiment is needed, and that input was
already present in [8].

The global fit shows that at NLO all considered processes except perhaps the two-photon
collisions can be described well when including the CO contributions. As explained in
more detail in [9], the distribution in the inelasticity variable z of photoproduction at HERA
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Figure 1: Plots a-t: Results of global fit [9] compared to ALICE [11], ATLAS [12], BELLE
[13], CDF [10, 14], CMS [15], DELPHI [16], LHCb [17], PHENIX [18], and ZEUS [19] data.
The blue bands are the color singlet model predictions, the yellow bands include the color
octet contributions.
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Figure 1: Plots u-z (continuation): Results of global fit [9] compared to H1 [20, 21] data.
The blue bands are the color singlet model predictions, the yellow bands include the color
octet contributions.

Set A: Do not mind feed-downs Set B: Subtract feed-downs first
xO J{ψp1Sr8s0 qy p4.97˘ 0.44q ˆ 10´2 GeV3 p3.04˘ 0.35q ˆ 10´2 GeV3

xO J{ψp3Sr8s1 qy p2.24˘ 0.59q ˆ 10´3 GeV3 p1.68˘ 0.46q ˆ 10´3 GeV3

xO J{ψp3Pr8s0 qy p´1.61˘ 0.20q ˆ 10´2 GeV5 p´9.08˘ 1.61q ˆ 10´3 GeV5

Table 1: Results of global fit [9] for the J{ψ CO LDMEs. Set A corresponds to the main fit
shown in figure 1. In set B, estimated feed-down contributions from higher charmonium
states were subtracted from the prompt data prior to fitting (hadroproduction: 36%,
photoproduction: 15%, γγ scattering: 9%, e`e´ annihilation: 26%).

is now well described even at high z (see figures 1t, w and z), where the older Born analyses
predicted a steep rise in the cross section not found in the data. The fact that the DELPHI
data overshoots the NRQCD prediction is not worrying since the experimental errors are
huge with just 16 events entering the data of figure 1q. The CS contributions alone are on
the other hand shown to fall clearly short of the data everywhere except for the BELLE total
e`e´ cross section, see figure 1p.

1.4 Polarization observables

Polarized NLO J{ψ production cross sections have been evaluated within the CSM, for direct
photoproduction [22] and hadroproduction [23], and for the 1Sr8s0 and 3Sr8s1 intermediate
states in hadroproduction [6]. Recently, for the first time, polarized NLO cross sections
including all CO contributions have been calculated, namely for direct photoproduction
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Figure 2: Polarization parameters λ and ν for direct photoproduction at HERA using CO
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5

http://www.hadron2011.de


XIV International Conference on Hadron Spectroscopy (hadron2011), 13-17 June 2011, Munich, Germany

at HERA [24]. In figure 2, the predictions for the polarization parameters λ and ν are
compared to data. They are defined by the angular momentum distribution of the decay
muons via

(2)
dσpJ{ψ Ñ µ`µ´q

d cos θ dφ
91` λ cos2 θ ` µ sin 2θ cos φ`

ν

2
sin2 θ cos 2φ,

where θ and φ are the polar and azimuthal angles of the µ` in the J{ψ rest frame for specific
choices of the coordinate axes. λ “ 0 corresponds to unpolarized J{ψ, whereas λ “ `1
(-1) stands for fully transversely (longitudinally) polarized J{ψ. Unfortunately, the H1 [21]
and ZEUS [25] data do not yet allow to distinguish the production mechanisms clearly, but
kinematical regions can be identified, in which a distinction could be possible in a future
more precise ep collider experiment: At higher pT, NRQCD predicts the J{ψ to be largely
unpolarized in contrast to the CSM predictions. In the z distributions, however, the scale
uncertainties are sizeable and the error bands of the CSM and NRQCD largely overlap. The
LO calculation corresponding to that NLO analysis has first been performed in [26].

As for hadroproduction at the Tevatron, the CDF [27] measurement shows that the J{ψ’s are
largely unpolarized, whereas the NLO CSM calculation [23] predicts largely longitudinally
polarized J{ψ, see figure 3. The parameter α equals λ in the definition (2). Predictions
including all the CO contributions have so far only been made at LO [29].

1.5 Improving the Color Singlet Model: kT factorization

In heavy quarkonium production, the hard scattering scales are typically much lower than
the collision energies, and the tested longitudinal momentum fractions x of the partons
inside the protons are so small that the partons’ transverse momenta kT are of the same
order as the longitudinal momenta and should hence not be neglected. That is the basic
idea behind using the kT factorization approach [30] in quarkonium production calculations.
The initial gluons are therefore off-shell in this formalism. The partonic cross sections,
which are so far only evaluated at LO in αs, are then convoluted with unintegrated, kT

dependent gluon parton distribution functions (PDFs), which are derived from the usual
gluon PDFs either in a DGLAP [31], a BFKL [32] or a so called CCFM [33] approach. This
derivation of the unintegrated PDFs is certainly the most subtle point here. Usually, only
CS contributions are considered. The kT factorization method gives very good descriptions
of the J{ψ photo- and electroproduction at HERA [34, 35], and has also been applied for
hadroproduction of J{ψ, χc and Υ at Tevatron [28, 35, 36] and RHIC [37]. The Monte Carlo
program CASCADE [38] also successfully simulates initial gluon radiation within the kT

factorization approach applying the CCFM [33] evolution equation.

1.6 Improving the Color Singlet Model: “NNLO˚”

The CSM could describe the hadroproduction data better if the next-to-next-to-leading-
order (NNLO) corrections had a large K factor like the NLO corrections. NNLO corrections
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consist of three parts: Two-loop contributions, one-loop times tree-level contributions and
pure real corrections. Only the sum of the three parts is infrared finite and gives the physical
result. Unfortunately, to date only the real corrections are calculated. In [39], a “NNLO˚”
correction was defined. It consists only of the real corrections, which are made finite by
cutting off phase space parts around the singularities in which ki ¨ k j ă xcut, with ki and
k j being momenta of external light QCD partons. The “NNLO˚” band is computed by
shifting this cutoff parameter xcut. This band reminds us that the NNLO cross sections can
be expected to have a flatter pT dependence than the NLO ones, and it is possible that the
NNLO corrections may indeed be large and positive, like the “NNLO˚” ones.

2 Open heavy flavour production

2.1 Theory frameworks

Heavy flavoured hadrons are hadrons consisting of one heavy quark and one or two light
quarks. Examples are the D mesons (charm plus one light quark) and the B mesons (bottom
plus one light quark). The production of these particles is described by the fragmentation
of outgoing heavy or light QCD partons into the heavy flavoured hadrons. The partonic
cross sections are thus folded not only with the PDFs but also with nonperturbative frag-
mentation functions (FFs), whose exact definition and theoretical interpretation depend on
the calculational scheme used. There are two main traditional schemes, which are valid
in complementary kinematical regions: The fixed-flavour-number scheme (FFNS), which
was also applied in all the heavy quarkonium calculations of section 1, and the zero-mass
variable-flavour-number scheme (ZM-VFNS). Let us for simplicity assume charm c as the
heavy quark. In the FFNS, we then have only the light quarks u, d, s and gluons as incoming
particles, the heavy quark c only appears as a final state particle, and the heavy quark mass
mc is kept finite. Here, we have two kinematical scales: mc and the typical scale Q, which
could be the hadron’s transverse momentum. This scheme is valid only at m2

c Æ Q2, because
at very large Q2, large logarithms logpQ2{m2

cq spoil the convergence of the perturbative
expansion. On the other hand, the ZM-VFNS is the classic parton model. Here, the charm
is treated massless like a light quark, and it appears both as an incoming and an outgoing
parton. Instead of the quasi-collinear logarithms logpQ2{m2

cq, genuinely collinear divergent
terms appear, which are factorized into the charm quark PDFs and FFs. Since any mc depen-
dent terms are missing, the ZM-VFNS is a good approximation only in the limit m2

c ! Q2.
Although the FFNS alone can already describe the data well in the currently accessed kine-
matical regions, one would like to have a combined scheme, which interpolates between
the FFNS and the ZM-VFNS, and is by itself valid at all scales Q2. There are currently two
of these interpolating schemes on the market: The general-mass variable-flavour-number
scheme (GM-VFNS) [40] and the fixed-order NLL scheme (FONLL) [41].

The GM-VFNS is an extension of the ZM-VFNS in such a way that in Feynman diagrams
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Figure 4: D0, D` and D`s hadroproduction at the LHC. GM-VFNS (BAK et al.) and
FONLL (MC et al.) predictions are compared to preliminary data measured by the
ALICE [52] and LHCb [53] collaborations. From [52] (left and middle) and [53] (right).

where c appears only as an outgoing parton, we do now consider a nonzero heavy quark
mass mc, while when it does also/only appear as an incoming particle, the heavy quark
mass is still kept zero like in the original ZM-VFNS. The bulk of the heavy mass dependence
is now taken into account, and the applicability of the ZM-VFNS is lowered down to scales
of about a few times the heavy quark mass. The large logpQ2{m2

cq terms now appearing
are factorized into the heavy quark PDFs and FFs and resummed using the DGLAP [31]
evolution equation according to the QCD factorization theorems, which are proven to hold
also in the case of these quasi-collinear logarithms [42].

In the FONLL scheme the predictions of the FFNS and the ZM-VFNS are overlaid by using
a Q “ pT dependent weight function, such that the FFNS and ZM-VFNS are recovered in
the respective pT limits. Additionally, the heavy quark FFs contain perturbative pieces at
the starting scale µ0 “ mc, such that the ZM-VFNS result matches the FFNS one at NLO.

2.2 Applications

Predictions at NLO accuracy have been made within the GM-VFNS for D˚˘ production in
two photon-collisions [43] and photoproduction [44], for hadroproduction of D0, D˚˘, D˘,
D˘s and Λ˘c [40, 45] and B meson hadroproduction [46]. NLO predictions in the FONLL
scheme have been calculated for D meson photoproduction [47], D0, D˚˘, D˘, D˘s and
Λ˘c production at the Tevatron [41], B meson production at the Tevatron [48] as well as
D and B meson production at RHIC [49]. An important input for all these calculations
are the nonperturbative FFs, which are extracted from fits to scaled energy or momentum
distributions of heavy flavour production in electron-positron collisions. In the GM-VFNS
framework, these have been extracted in [50] and in the FONLL framework in [48, 51].

In figure 4 GM-VFNS and FONLL predictions for hadroproduction of D0, D` and D`s
mesons are compared to recent preliminary data by ALICE [52] and LHCb [53]. The
predictions of both models agree with the data.
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Figure 5: Hadroproduction of B` mesons at the Tevatron. FFNS, ZM-VFNS and GM-
VFNS predictions are compared to data measured by the CDF collaboration [54]. The
“FFN (old input)” line is an older prediction of the FFNS evaluated with outdated input
parameters. From [46].

In figure 5 predictions for B` hadroproduction at the Tevatron [54] are compared with
predictions of the FFNS, ZM-VFNS and GM-VFNS [46]. We see that all three predictions
are compatible with the data in their respective regions of applicability. At very high pT we
see the difference between the FFNS on the one hand and the ZM-VFNS and the GM-VFNS
on the other hand. At high pT the latter two agree by construction, while we start to see
differences between them at moderate values of pT.
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