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Dalitz plot studies for multi-hadron decays of heavy mesons are expected to become very

important tools for precision investigations of CP violation. A thorough understanding of

the hadronic final-state interactions is a prerequisite to achieve a highly sensitive, model-

independent study of CP-violating phases in such processes. We illustrate the theoretical

tools available, as well as still to be developed, from low-to-medium-energy hadron physics

for this purpose, and the goals of the informal Les Nabis network studying these and related

problems.

1 CP-violation in Dalitz plots

A precise study of final-state interactions is increasingly becoming of paramount importance
for our understanding of the most diverse aspects of particle decays involving hadrons.
Final-state interactions can be of significance for various reasons: if they are strong, they can
significantly enhance decay probabilities; they can significantly shape the decay probabilities,
most prominently through the occurrence of resonances; besides resonances, also new and
non-trivial analytic structures can occur, such as threshold or cusp effects (for the prominent
role cusp effects have played recently in studying pion–pion interactions, see Ref. [1] and
references therein); and finally, they introduce strong or hadronic phases or imaginary parts,
the existence of which is a prerequisite for the extraction of CP-violating phases in weak
decays (see e.g. Ref. [2]). Dalitz plot studies of weak three-body decays of mesons with
open heavy flavor (both D and B) are expected to acquire a key role in future precision
investigations of CP violation, due to their much richer kinematic freedom compared to the
(effective) two-body final states predominantly used to study CP violation at the B factories.
In many cases, the branching fractions are significantly larger; furthermore, the resonance-
rich environment of multi-meson final states may help to enlarge small CP phases in parts
of the Dalitz plot, and differential observables may allow to obtain information on the
operator structure that drives CP violation beyond the Standard Model, once it is observed.
Since the results from the B factories have shown that the Cabibbo–Kobayashi–Maskawa
theory [3] represents at least the dominant source of CP violation, our long-term goal will
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be to find other sources of CP violation that contribute additional, smaller effects. For this
purpose, clearly extremely accurate measurements and means of theoretical interpretation
are required. Strong evidence for CP violation in three-body final states has already been
reported for B˘ Ñ K˘π¯π˘ [4], e.g. with a 3.7σ signal in the effective Kρ channel, while
only negative results exist for D decays so far [5].

There are different possibilities how to analyze CP violation in Dalitz plots. One sugges-
tion is a strictly model-independent extraction from the data directly [6, 7], e.g. using the
significance [7] variable defined as

(1) DpSCPpiq
.
“

Npiq ´ Npiq
b

Npiq ` Npiq
,

where Npiq and Npiq denote the event numbers of CP-conjugate decay modes in a specific
Dalitz plot bin i. CP violation can then be identified in a deviation from a purely Gaus-
sian distribution in the significance plots. The significance method allows to study local
asymmetries and requires no theoretical input at all.

An alternative approach, in contrast, makes use of information on the strong amplitudes
as input. To see why this may be advantageous, we consider the following toy model:2

consider event number distributions given by a (Breit–Wigner) resonance signal (of mass
Mres and width Γres) on a certain background, with a CP-violating phase δCP, according to

(2) N, N “ α` β Re
! e˘iδCP

s´M2
res ` iMresΓres

)

ñ N ´ N “
sin δCP ˆ 2βMresΓres

ps´M2
resq

2 ` pMresΓresq2
.

Figure 1 shows the count-rate difference and the corresponding significance distributions
for two simulated cases of pseudo-data of different statistical weight: while in the high-
statistics case, there indeed seems to be a deviation from Gaussian distribution in the
significance, this is definitely lost in the case of less events. In contrast, fitting the data with
the functional form (2) still allows to extract δCP with some (limited) accuracy even in the
sparser sample. So while the theoretical assumptions and prejudices going into such an
analysis clearly have to be very carefully judged, their benefit in terms of vastly increased
sensitivity is also obvious.

In the following, we will therefore briefly sketch some of the tools available to analyze the
hadronic amplitudes of the (light) final-state particles (such as pions and kaons).

2 Pion–pion scattering: Roy equations

Analyticity, unitarity, and crossing symmetry provide a high degree of constraint for the
pion–pion scattering amplitude, which can be exploited using dispersion relations. Starting

2I am grateful to C. Hanhart for providing me with this example.
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Figure 1: Toy example for extraction of a CP-violating phase, for high- (left) and low-
(right) statistics samples, using the known Breit–Wigner shape (top) versus the significance
variable (bottom). Input parameters used are δCP “ 5˝, Mres “ 0.77 GeV, Γres “ 0.15 GeV.
Figure courtesy of C. Hanhart.

from a twice-subtracted dispersion relation at fixed Mandelstam variable t,

(3) Tps, tq “ cptq `
1
π

ż 8

4M2
π

ds1
! s2

s12ps1 ´ sq
`

u2

s12ps1 ´ uq

)

Im Tps1, tq ,

the subtraction function cptq can be determined from crossing symmetry. Projecting onto
partial waves tI

J of definite angular momentum J and isospin I, one obtains a coupled
system of partial-wave integral equations,

(4) tI
Jpsq “ kI

Jpsq `
2
ÿ

I1“0

8
ÿ

J1“0

ż 8

4M2
π

ds1K I I1

J J1ps, s1qIm tI1

J1ps1q ,

where the kernels K I I1

J J1ps, s1q are kinematical functions known analytically. The subtraction
polynomial kI

Jpsq contains the ππ scattering lengths as the only free parameters; these may
in turn be further constrained by matching to chiral perturbation theory [8]. Equation (4)
can finally be turned into a coupled set of equations for the phase shifts, the Roy equations [9],
by assuming elastic unitarity in the form

(5) tI
Jpsq “

e2iδI
J psq ´ 1
2iσ

, Im tI
Jpsq “ σ|tI

Jpsq|
2 , σ “

c

1´
4M2

π

s
.
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Figure 2: Graphical representation of the consequence of analyticity and unitarity for
form factors.

Modern precision analyses of the Roy equations have been performed in Ref. [10], and
similarly for pion–kaon scattering [11]; compare also the discussion of γγ Ñ ππ at this
conference [12]. These provide us with high-precision parameterizations of the most
relevant scattering amplitudes for light mesons appearing in the final states of heavy-meson
decays.

3 Analyticity and unitarity for form factors

Final-state interactions between only two strongly interacting particles can be described in
terms of form factors, which in turn can be linked to the properties of scattering amplitudes
using analyticity and unitarity. As illustrated in Fig. 2, the unitarity relation for a form
factor FI

J psq (here: of the pion) reads

(6) Im FI
J psq “ FI

J psq ˆ θ
`

s´ 4M2
π

˘

ˆ sin δI
Jpsqe

´iδI
J psq ,

from which one immediately deduces Watson’s final-state theorem [13]: the form factor
shares the phase δI

Jpsq of the (elastic) scattering amplitude. The solution to Eq. (6) is obtained
in terms of the Omnès function [14],

(7) FI
J psq “ PI

J psqΩ
I
Jpsq , ΩI

Jpsq “ exp
"

s
π

8
ż

4M2
π

ds1
δI

Jps
1q

s1ps1 ´ sq

*

,

where PI
J psq is a polynomial. Note that the Omnès function is completely given in terms of

the phase shift. A classic application of such a form factor representation is the pion vector
form factor Fπ

V psq, which rather than by Eq. (7) is written in a more refined way as

(8) Fπ
V psq “ Ω1

1psqGωpsqΩinelpsq ,

where Gωpsq takes into account ρ ´ ω mixing, and Ωinelpsq parameterizes inelasticities,
effectively setting in above s Á pMπ ` Mωq

2, using conformal mapping techniques [15].
Such form factor representations can be used for analyses of the e`e´ Ñ π`π´ data to
reduce the error of the hadronic contribution to the muon g´ 2, or to check the compatibility
of the data with analyticity and unitarity [16]. Note that the effects of chiral dynamics
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Figure 3: Example for the complication of the analytic structure of 4-point functions
through crossed-channel effects, here for the decay of an η (double line) into three pions
(single lines).

are particularly important for scalar form factors, where a parameterization in terms of
Breit–Wigner resonances can lead to completely wrong phase motions (see e.g. Ref. [17] for
the context of B Ñ 3π decays).

4 Dispersion relations for three-body decays

The application of dispersion relations to three-body decays is more complicated than the
treatment of form factors due to the more involved analytic structure, and the possibility
of crossed-channel rescattering (compare also Ref. [18] reported at this conference); see
Fig. 3 for a depiction of the complication of the unitarity relation. We discuss here the
(low-energy) example of η Ñ 3π decays, which has received much renewed attention
recently [19, 20] due to its importance for the extraction of the light quark mass ratios. One
starts by decomposing the amplitude Mps, t, uq9Apη Ñ π`π´π0q into partial waves of
isospin I according to [21, 22]

(9) Mps, t, uq “M0psq ` ps´ tqM1puq ` ps´ uqM1ptq `M2ptq `M2puq ´
2
3
M2psq ,

where the MIpsq are functions of one variable only, with only a right-hand cut. Equation (9)
is exact as long as discontinuities of D- and higher partial waves are neglected. The unitarity
relation for the MIpsq,

(10) ImMIpsq “
 

MIpsq ` M̂Ipsq
(

ˆ θ
`

s´ 4M2
π

˘

ˆ sin δIpsqe´iδIpsq

(we now ignore the angular-momentum indices), is then complicated compared to Eq. (6)
by inhomogeneities M̂Ipsq, which are given by angular averages over the MI according to

M̂0psq “
2
3
xM0ypsq `

20
9
xM2ypsq ` 2ps´ s0qxM1ypsq `

2
3

κpsqxzM1ypsq ,

xzn f ypsq “
1
2

ż 1

´1
dz zn f

`1
2p3s0 ´ s` zκpsqq

˘

, s0 “
1
3
`

M2
η ` 3M2

π

˘

,

κpsq “
b

ps´ pMη `Mπq
2qps´ pMη ´Mπq

2q ˆ

c

1´
4 M2

π

s
,(11)
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Figure 4: Real and imaginary part of the η Ñ π`π´π0 amplitude Mps, t “ uq. Compare
also Ref. [19].

and similarly for the other M̂I . Note that the angular integration including the κpsq function
is non-trivial and generates a complex analytic structure, including three-particle cuts due
to the fact that the η is unstable and decays. The analog to the Omnès solution (7) are then
integral equations involving the inhomogeneities [22]

(12) M0psq “ Ω0psq
"

α0 ` β0 s` γ0 s2 `
s3

π

ż 8

4M2
π

ds1

s13
sin δ0ps1qM̂0ps1q
|Ω0ps1q|ps1 ´ s´ iεq

*

,

with subtraction constants α0, β0, γ0, and similar forms for the other partial waves. (See
Ref. [23] for earlier, related formulations.) Equations (11) and (12) can then be solved
iteratively, e.g. matching the subtraction constants to chiral perturbation theory, see Fig. 4.
The iteration converges fast, with the second iteration already very close to the final result.

The method sketched here is currently also applied to other light-meson decays such as
η1 Ñ ηππ or ω, φ Ñ 3π [24]. Challenges to be faced when extending this formalism to
heavy-meson decays include the necessity to treat systems of integral equations when
coupled channels within one partial wave cannot be ignored, or inelasticities are not
negligible. In particular when considering B-meson decays, elastic unitarity will surely not
be sufficient. It will have to be checked when a purely perturbative treatment of crossed-
channel effects is feasible (compare e.g. Ref. [25]), and when higher partial waves become
important. To investigate these and related questions is part of the program of the informal
Les Nabis network [26], which brings together physicists from theory and experiment in
heavy- and light-quark physics and aims at optimizing future Dalitz plot studies along the
lines sketched here—with the strong goal to better interpret the mechanism of CP violation
in nature, yet at the same time teaching us important lessons on nonperturbative strong
interactions.
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