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Starting from hyperbolic dispersion relations, we present a system of Roy–Steiner equations for

pion Compton scattering that respects analyticity and unitarity requirements, gauge invariance,

as well as crossing symmetry, and thus all symmetries of the underlying quantum field theory.

To suppress the dependence on the high-energy region, we also consider once- and twice-

subtracted versions of the equations, where the subtraction constants are identified with dipole

and quadrupole pion polarizabilities. We consider the resolution of the γγ Ñ ππ partial

waves by a Muskhelishvili-Omnès representation with finite matching point, and discuss the

consequences for the two-photon coupling of the σ resonance as well as its relation to pion

polarizabilities.

1 Introduction

The Roy equations for ππ scattering [1] are a coupled system of partial wave dispersion
relations that respects analyticity, unitarity, and crossing symmetry of the scattering am-
plitude. In recent years, partial wave dispersion relations in combination with unitarity
(and chiral symmetry) have been used for high-precision studies of low-energy processes,
both in ππ [2, 3] and πK [4] scattering. An important application of ππ Roy equations in
combination with Chiral Perturbation Theory (ChPT) was the precise prediction of the pole
parameters of the σ resonance [5]

(1) Mσ “ 441`16
´8 MeV, Γσ “ 544`18

´25 MeV.

The reaction γγ Ñ ππ provides an alternative to ππ scattering for the excitation of the σ.
In particular, as discussed in detail in [6], Roy-equation techniques in γγ Ñ ππ allow us to
constrain the σ’s two-photon width Γσγγ at a similar level of rigor as Mσ and Γσ based on
ππ Roy equations.
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2 Roy equations for ππ scattering

Roy equations for ππ scattering are obtained by starting from a twice-subtracted dispersion
relation at fixed Mandelstam t, determining the t-dependent subtraction constants by means
of crossing symmetry, and finally performing a partial wave expansion. This leads to a
coupled system of integral equations for the ππ partial waves tI

Jpsq with isospin I and
angular momentum J

(2) tI
Jpsq “ kI

Jpsq `
2

ÿ

I1“0

8
ÿ

J1“0

8
ż

4M2
π

ds1K I I1
J J1ps, s1qIm tI1

J1ps
1q

where K I I1
J J1 are known kinematical kernel functions and the ππ scattering lengths—the only

free parameters—appear in the subtraction term kI
J . Assuming elastic unitarity

(3) Im tI
Jpsq “ σpsq|tI

Jpsq|
2, tI

Jpsq “
e2iδI

J psq ´ 1
2iσpsq

, σpsq “

c

1´
4M2

π

s
,

(2) translates into a coupled integral equation for the phase shifts δI
J themselves.

3 Roy–Steiner equations for γγ Ñ ππ

Crossing symmetry in this case is less restrictive than for ππ scattering, as it couples
γγ Ñ ππ to pion Compton scattering γπ Ñ γπ, which we will consider as the s-channel
process. Roy–Steiner equations are then most conveniently constructed based on hyperbolic
dispersion relations [7]. The resulting system of integral equations couples the γγ Ñ ππ

partial waves hI
J,˘ptq to the γπ Ñ γπ partial waves f I

J,˘psq (with photon helicities ˘), e.g.
(4)

hI
J,´ptq “ Ñ´

J ptq `
1
π

8
ż

M2
π

ds1
8
ÿ

J1“1

G̃´`J J1 pt, s1qIm f I
J1,`ps

1q `
1
π

8
ż

4M2
π

dt1
ÿ

J1
K̃´´J J1 pt, t1qIm hI

J1,´pt
1q,

where Ñ´
J ptq includes the QED Born terms. Subtracting at t “ 0, s “ M2

π, the subtraction
constants directly correspond to pion polarizabilities. In the once-subtracted case, one
needs the dipole polarizabilities α1 ˘ β1, while a second subtraction requires in addition
knowledge of the quadrupole polarizabilities α2 ˘ β2.

Elastic unitarity is also less restrictive than for ππ scattering, since the unitarity relation is
linear in hI

J,˘

(5) Im hI
J,˘ptq “ σptqhI

J,˘ptqt
I
Jptq

˚.

Below inelastic thresholds the phase of hI
J,˘ coincides with δI

J (“Watson’s theorem”). Assum-
ing this phase to be known, the equations thus reduce to a Muskhelishvili–Omnès problem
for hI

J,˘ [8].
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4 Muskhelishvili–Omnès solution and results for Γσγγ

To solve the equations for hI
J,˘, we truncate the system at J “ 2. Furthermore, we assume

the amplitudes to be known above the matching point tm “ p0.98 GeVq2. The solution can
then be written down in terms of Omnès functions

(6) ΩI
Jptq “ exp

#

t
π

tm
ż

4M2
π

dt1
δI

Jpt
1q

t1pt1 ´ tq

+

.

We find that the solutions for different partial waves in general do not decouple, e.g. the
equation for the S-wave involves spectral integrals over the D-waves as well [6]. This is a
new result of our dispersive treatment of γγ Ñ ππ based on Roy–Steiner equations.

We approximate Im f I
J,˘psq, which at low energies is dominated by multi-pion states, by a

sum of resonances [9]. Above the matching point we use a Breit–Wigner description of the
f2p1270q, which dominates the cross section at higher energies. Within our formalism [6] we
derive a sum rule for the I “ 2 polarizabilities, which—in combination with ChPT results for
dipole and neutral-pion quadrupole polarizabilities [10]— produces an improved prediction

(7) pα2 ´ β2q
π˘ “ p15.3˘ 3.7q ¨ 10´4fm5

for the charged-pion quadrupole polarizability. This sum-rule result together with the ChPT
values for the other polarizabilities [10] leads to the “ChPT” prediction for the total cross
section of γγ Ñ π0π0 depicted in the left panel of Fig. 1. The result labeled “GMM” is found
when we adopt the polarizability values of a recent fit of a two-channel Muskhelishvili–
Omnès representation to γγ Ñ ππ cross section data [9]. The uncertainty due to the ππ

phases represented by the grey band is estimated by varying between two recent state-of-
the-art analyses based on Roy and Roy-like equations [3, 11]. We see that especially for the
twice-subtracted version the agreement with experiment in the low-energy region is very
good. Since we have shown that the σ lies within the domain of validity of our Roy–Steiner
equations [6], this formalism allows for a reliable analytic continuation to the σ pole.

The main result of our analysis is shown in the right panel of Fig. 1: there is a correlation
between Γσγγ and the I “ 0 pion polarizabilities that follows from Roy–Steiner equations
and input for the ππ phases alone. In combination with the ChPT-plus-sum-rule input for
the polarizabilities, we obtain

(8) Γσγγ “ p1.7˘ 0.4qkeV.
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Figure 1: Total cross section for γγ Ñ π0π0 for | cos θ| ď 0.8| (left) and Γσγγ as a function
of the I “ 0 pion polarizabilities (right). The black line refers to the unsubtracted case and
the colored lines to the twice-subtracted version with pα2 ´ β2q

I“0 as indicated (in units
of 10´4fm5). The grey bands represent the uncertainty due to the ππ input. The cross
corresponds to the twice-subtracted case plus ChPT input.
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