The $Y(3940), Z(3930)$ and the $X(4160)$ as dynamically generated resonances from the vector-vector interaction

Raquel Molina ${ }^{1}$ and Eulogio Oset
Instituto de Física Corpuscular (IFIC, centro mixto CSIC-UV), Valencia, Spain

Abstract

We apply a unitary approach together with a set of hidden-gauge Lagrangians to study the vector-vector interaction. Concretely, we focus on the sector with quantum numbers charm $C=0$ and strangeness $S=0$ in the region around 4000 MeV . We get five poles, three of which could be identified with the $\mathrm{Y}(3940), \mathrm{Z}(3930)$ and $\mathrm{X}(4160)$. These poles appear with quantum numbers $I=0$ and $J^{P C}=0^{++}, 2^{++}$and 2^{++}, respectively, and can be considered as hadronic molecules made of $D^{*} \bar{D}^{*}, D_{s}^{*} \bar{D}_{s}^{*}$.

1 Introduction

The B-factories at SLAC, KEK and CESR, which were originally constructed to test matterantimatter asymmetries or CP violation, have discovered new hidden-charm states around the energy region of 4000 MeV . Generally speaking, these states cannot be accomodated in the $c \bar{c}$ spectrum. They are naively called as XYZ particles.
In this talk we study the case of a system of two vector meson with charm $C=0$ and strangeness $S=0$ around 4000 MeV (hidden charm sector).

2 Formalism

Within the theorical framework, there are two main ingredients: first, we take the Lagrangians for the interaction of vector mesons among themselves, that come from the hidden gauge formalism of Bando-Kugo-Yamawaki [1]. Second, we introduce the potential V obtained from these Lagrangians (projected in s-wave, spin and isospin) in the Bethe Salpeter equation, $T=(\hat{1}-V G)^{-1} V$, where G is the loop function. Finally, we look for poles of the unitary T matrix in the second Riemann sheet. All this procedure is well explained in [2,3].

[^0]| $I^{G}\left[J^{P C}\right]$ | Theory | | | | |
| :--- | :---: | :---: | :---: | :---: | :---: |
| | (Mass, Width) | Name | Mass | Width | $J^{P C}$ |
| $0^{+}\left[0^{++}\right]$ | $(3943,17)$ | $Y(3940)$ | 3943 ± 17 | 87 ± 34 | J^{P+} |
| | | | $3914.3_{-3.8}^{+4.1}$ | 33_{-8}^{+12} | |
| $0^{-}\left[1^{+-}\right]$ | $(3945,0)$ | $Y_{p}(3945) "$ | | | |
| $0^{+}\left[2^{++}\right]$ | $(3922,55)$ | $Z(3930)$ | 3929 ± 5 | 29 ± 10 | 2^{++} |
| $0^{+}\left[2^{++}\right]$ | $(4157,102)$ | $X(4160)$ | 4156 ± 29 | 139_{-65}^{+113} | J^{P+} |
| $1^{-}\left[2^{++}\right]$ | $(3912,120)$ | $" Y_{p}(3912) "$ | | | |

Table 1: Comparison of the mass, width and quantum numbers with the experiment. All the quantities are in units of MeV .

The results for the pole position obtained together with a possible assignment with some of the XYZ particles observed in the energy region of 4000 MeV is given in Table 1. While the $Y(3940)$ and $Z(3930)$ couple more to $D^{*} \bar{D}^{*}$ in the model, the $X(4160)$ couples to $D_{s}^{*} \bar{D}_{s}^{*}$ mostly. The other two states, one with $I=1$ and $J=2$ and the other with $I=0$ and $J=1$ are predictions of the model.

3 Conclusions

We find five states with quantum numbers $I^{G}\left[J^{P C}\right]=0^{+}\left[0^{++}\right], 0^{-}\left[1^{+-}\right], 0^{+}\left[2^{++}\right], 0^{+}\left[2^{++}\right]$ and $1^{-}\left[2^{++}\right]$that are bound states or resonances made of $D^{*} \bar{D}^{*}$ and $D_{s}^{*} \bar{D}_{s}^{*}$ mostly. The states with $I^{G}\left[J^{P C}\right]=0^{-}\left[1^{+-}\right]$and $1^{-}\left[2^{++}\right]$are predictions of the model whereas the others can be associated to the $\mathrm{Z}(3930), \mathrm{Y}(4140)$ and $\mathrm{X}(4160)$. The region around 3940 MeV is very interesting and there could be more resonances not yet seen in this region.

References

[1] M. Bando, T. Kugo, S. Uehara, K. Yamawaki and T. Yanagida, Phys. Rev. Lett. 54, 1215 (1985). M. Bando, T. Kugo and K. Yamawaki, Phys. Rept. 164, 217 (1988). M. Harada and K. Yamawaki, Phys. Rept. 381, 1 (2003)
[2] R. Molina, D. Nicmorus and E. Oset, Phys. Rev. D 78, 114018 (2008)
[3] L. S. Geng and E. Oset, Phys. Rev. D 79, 074009 (2009).
[4] R. Molina and E. Oset, Phys. Rev. D 80, 114013 (2009)
[5] S. L. Olsen, ArXiv: 0901.2371 [hep-ex], 0909.2713 [hep-ex]

[^0]: ${ }^{1}$ rmolina@ific.uv.es

