Three-body final state interactions in $D^+ o K^- \pi^+ \pi^+$

Patrícia C. Magalhães^{1,a}, M. R. Robilotta^a, K. S. F. F. Guimarães^b, T. Frederico^b, W. de Paula^b, A. C. dos Reis^c, I. and Bediaga^c

^aInstituto de Física, Universidade de São Paulo, São Paulo, SP, Brazil, 05315-970 ^bInstituto Tecnológico de Aeronáutica, São José dos Campos, SP, Brazil, 12.228-900 ^cCentro Brasileiro de Pesquisas Físicas, Rio de Janeiro, RJ, Brazil, 22290-180

We stress the importance of three-body final state interactions in $D^+ \to K^- \pi^+ \pi^+$. The basic building block is the $K\pi$ amplitude with parameters determined by a fit to elastic LASS data. Based on a vector weak vertex, we can describe the $K\pi$ phase production experimental in the elastic region.

1 Introduction

Decays of D mesons became an important source of information about light scalars mesons, especially in the reactions $D^+ \to K^- \pi^+ \pi^+$ and $D^+ \to \pi^+ \pi^+ \pi^-$. We calculate three-body effects in the decay $D^+ \to K^- \pi^+ \pi^+$ and our main motivation is the discrepancy between the projection of $K^-\pi^+$ S-wave amplitudes from E791 [1] and FOCUS [2] experiments, and the scattering $K^-\pi^+$ S-wave from LASS [3]. To calculate the $D^+ \to K^-\pi^+\pi^+$ decay, we need to deal with two independent families of processes: the weak vertex, usually treated by quark factorization techniques in the literature [4], and the strong final state interactions (FSIs), which do take place after the weak decay. We concentrate on the three-body structure of FSIs and aim at identifying leading effects. Technical details of our calculation can be found in [5]. Among the simplifications made, we mention the absence in the $K\pi$ amplitude of both isospin 3/2 and P waves, as well as couplings to vector mesons and to inelastic channels.

The $K\pi$ amplitude is an essential ingredient in the three-body FSIs. We employ an elastic amplitude inspired on chiral perturbation theory, eqs.(1, 2), supplemented by unitarization. The tuning to elastic LASS data [3] defines the three free parameters in (1, 2). This amplitude contains two poles, associated with the κ and the K_0^* (1430).

(1)
$$\overline{T}_{1/2} = \frac{1}{F^2} \left[s + 3 t/4 - (M_\pi^2 + M_K^2) \right] - \frac{\alpha(s)}{s - m_R^2},$$

(2)
$$\alpha = \frac{3}{2F^4} \left[c_d s - (c_d - c_m) \left(M_\pi^2 + M_K^2 \right) \right]^2.$$

¹patricia@if.usp.br

In our exploratory work, we assume three simple topologies for the weak amplitude, indicated schematically in fig. 1. The strengths of these vertices are respectively W_a , W_b and W_c , taken as constants, and their strong evolution is studied independently.

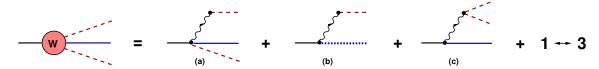


Figure 1: Topologies for the weak vertex: the dotted line is a scalar resonance and the wavy line is a W^+ , which is contractile to a point in the calculation; in diagram c, one of the pions is neutral.

2 Three-body FSIs

Our treatment of FSIs departs from a Faddeev-like integral equation, represented in fig.2 top, which is subsequently expanded perturbatively, fig.2 bottom. Terms in the FSI series

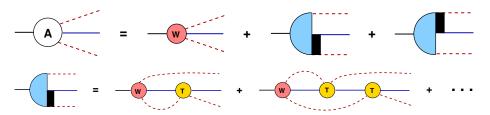


Figure 2: $D^+ \to K^- \pi^+ \pi^+$ decay: (top) partonic amplitude (red) and hadronic multiple scattering in the ladder approximation; (bottom) rescattering series implementing three-body unitary.

contain a recursive component, the $K\pi$ two-body amplitude. Each weak topology in fig.1 is coupled to this series, giving rise to the amplitudes A_a (fig. 3), A_b (fig. 4) and A_c (fig. 5). Processes arising from the weak vertex (a) in fig.1 involves a tree term, whereas the three-body rescattering series starting from the weak vertex b has to be treated properly in order to avoid double counting. The bottom line in fig. 4 represents the construction of resonance width. In the case of process associated with the weak vertex c in fig.5, the series is simplified, since the π_0 produced directly from the W^+ decay is not present in the final state and the tree diagram does not play a role.

For simplicity, we show here contributions from FSI series up to a single rescattering. This is a good approximation, since higher order terms tend to decrease. In the case of A_a , the leading contributions are given in the first line in fig.3, which include both tree and one loop diagrams. In A_b , only the first diagram in the upper line of fig. 4 is kept and, in A_c , the leading term is just the one loop diagram in the middle of fig. 5. In graph 6,

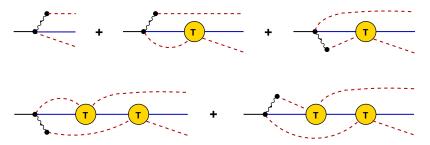


Figure 3: Diagrams involving the weak vertex W_a ; the wavy line is a W^+ , always plugged to a π^+ ; the π produced together with the \overline{K} on the opposite side can be either positive or neutral.

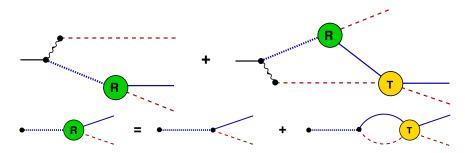


Figure 4: Diagrams involving the weak vertex W_b ; the wavy line is a W^+ , always plugged to a π^+ and the dotted line is a scalar resonance, which has a width given by the substructure R described at the bottom line.

we show these individual contributions for the phase, compared with the experimental scattering (LASS) [3] and production (FOCUS) [2] data. As we can see, while contributions from A_a and A_b fall exactly over the elastic $K\pi$ phase, the amplitude A_c coincides with FOCUS data [2] up to the region of the peak, when shifted by -163^0 . The A_c topology is the only involving only a proper three-body interactions whereas A_a and A_b include tree contributions.

Thus, with a simple model of three-body final state interactions and a number of simplifying assumption we can reconcile experimental data between two-body interactions and weak decays, stressing the importance of proper three-body effects in the $D^+ \rightarrow K^- \pi^+ \pi^+$ decay

Figure 5: Diagrams involving W_c ; one of the pions in the weak vertex is neutral.

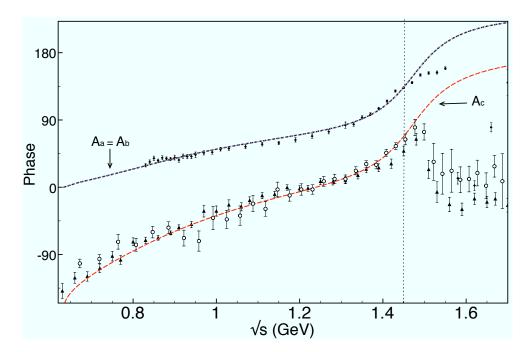


Figure 6: Leading contributions of the amplitudes A_a (blue doted), A_b (orange dashed) and A_c shifted by -163^0 (red long dashed), compared with FOCUS [2](triangle), E791 [1](circle), and elastic $K\pi$ results from LASS [3](diamond).

amplitude. More calculation details can be found in reference [5].

Acknowledgments

This work was supported by FAPESP. PCM would like to thanks the organizers of Hadron2011 for the local support.

References

- [1] E.M. Aitala *et al.* (E791), Phys. Rev. Lett. **89**, 121801 (2002); E.M. Aitala *et al.* [E791 Collaboration], Phys. Rev. D**73**, 032004 (2006); Erratum-ibid. D **74**, 059901 (2006).
- [2] J.M. Link et al. [FOCUS Collaboration], Phys. Lett. B 681, 14 (2009).
- [3] D. Aston et al., Nucl. Phys. B **296**, 493 (1988); P. Estabrooks et al., Nucl. Phys. B **133**, 490 (1978).
- [4] D. R. Boito, R. Escribano, Phys. Rev. D **80**, 054007 (2009); M. Diakonou and F. Diakonos, Phys. Lett. B **216**, 436 (1989).

[5] P.C.Magalhães et al., [ArXiv:1105.5120].