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We study the Nucleon-Nucleon interaction in the Born-Oppenheimer approximation at second

order in perturbation theory including the ∆ resonance as an intermediate state. The potential

resembles strongly chiral potentials computed either via soliton models or chiral perturbation

theory and has a van der Waals like singularity at short distances which is handled by means

of renormalization techniques. Results for the deuteron are discussed.

1 Introduction

A major goal of Nuclear Physics is the derivation of the Nucleon-Nucleon (NN) interaction
from Quantum Chromodynamics (QCD). In QCD the fundamental degrees of freedom are
colored quarks and gluons which are confined to form colorless strongly interacting hadrons.
Because of this the resulting nuclear forces at sufficiently large distances correspond to
spin-flavor excitations, very much like the dipole excitations generating the van der Waals
(vdW) forces acting between atoms (for a review see e.g. [1]). In the Born-Oppenheimer
(BO) approximation and assuming no retardation and no electron cloud overlap at large
distances, the atom-atom energy at a separation distance r can be calculated at second order
perturbation theory as,

VAA “ xAA|Vdip|AAy `
ÿ

AA‰A˚A˚

|xAA|Vdip|A˚A˚y|2

EAA ´ EA˚A˚
` ¨ ¨ ¨ “ ´

C6

r6 ` . . . ,(1)

where |AAy and |A˚A˚y is the electron wave function corresponding to a pair of well
separated clusters in their atomic ground state and excited states respectively and where we
assume a system with no permanent electric dipole. Driven by this compelling molecular
analogy we want to analyze the NN interaction under similar dynamical assumptions.

The generalization to the NN system is straightforward, by just replacing Vdip by the
One-Pion-Exchange (OPE) potential V1π and was already discussed in Ref. [2] within the
context of chiral soliton models and the associated long-range spin-flavor universality. One
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considers the colorless nucleons as two quark clusters which in the chiral quark model
exchange a colorless pion at large distances. The mutual (chiral) polarizability causes
attraction between the nucleons, exactly in the same way as for atom-atom interactions and
equivalently, using Eq. (1), one can obtain an optical potential where the effect of excited
states as the ∆ is included perturbatively,

V2Nprq “ V1π
NN,NNprq ` 2

|V1π
NN,N∆prq|

2

MN ´M∆
`

1
2
|V1π

NN,∆∆prq|
2

MN ´M∆
`OpV3q ,(2)

where V1π
NN,NN is the NN OPE potential and V1π

NN,N∆ and V1π
NN,∆∆ are OPE transition poten-

tials 2. Eq. (2) reproduces exactly the Skyrme soliton model result of Refs. [4, 5]. At very
short distances Eq. (2) behaves like a vdW potential „ ´g4

A{p∆ f 4
πr6q and in fact it reduces

to the Chiral Two-Pion-Exchange (ChTPE) potential at NLO-∆ [6, 7] with the identification
hA{gA “ fπN∆{p2 fπNNq. Moreover, although both potentials are not completely equiva-
lent they are very similar even at intermediate distances which explain why we achieve
results for most of NN observables looking very much like those of more sophisticate chiral
potentials.

2 Results

The BO-vdw potential, Eq. (2), presents a short distance singularity and to deal with it
we use the method of renormalization with boundary conditions [8]. In [2] we showed
satisfactory results for 1S0 and 3S1 ´

3 D1 phase shifts. Here and for the sake of brevity, we
concentrate on deuteron properties. A more detailed study will be presented elsewhere. The
deuteron is solved by fixing its binding energy Bd “ 2.224575 MeV, the D/S ratio η “ 0.0256
and the 3S1 scattering length a3S1

“ 5.419 fm from which we obtain the properties, AS “

0.873p8qfm´1{2, rm “ 1.945p14qfm, Qd “ 0.2712p1qfm2, PD “ 7.3p1.2q%, xr´1y “ 0.468p8q,
a3D1

“ 6.56p5qfm5 , aE1 “ 1.549p1qfm3 in the case in which we use the SUpNcq quark model
relation with Nc “ 3 and, AS “ 0.886p9qfm´1{2, rm “ 1.973p18qfm, Qd “ 0.2789p12qfm2,
PD “ 6.8p1.4q%, xr´1y “ 0.44p1q, a3D1

“ 6.471p9qfm5 , aE1 “ 1.689p3qfm3 in the case Nc Ñ8.
The estimate error corresponds to taking the extreme values gA “ 1.26 and gA “ 1.29. The
renormalized 1S0 and coupled 3S1, E1 and 3D1 waves were already shown in Ref. [2]. The
deuteron electromagnetic form factors in the IA using our renormalized wave functions are
displayed in Fig. 1, which within uncertainties are reproduced rather well.

2This potential depends on the coupling constants fπNN and fπN∆. We can use the relation fπNN “

gAmπ{p2 fπq and the SUpNcq relation [3] fπN∆{ fπNN “ 3
a

pNc ´ 1qpNc ` 5q{p
?

2pNc ` 2qq such that the only
free parameter is actually gA having an admissible value in between 1.26 and 1.29.
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Figure 1: Deuteron charge GC (left), magnetic GM (middle) and quadrupole GQ (right)
form factors in the IA. The dependence with gA is shown by light bands.

.

3 Three-body force

The extension to the three nucleon force (3NF) follows from the generalization of Eq. (2) for
the 3N case, at 2nd order perturbation theory, being,

V3N “ xNNN|VOPE|NNNy `
ÿ

NNN‰HH1H2

| xNNN|VOPE|HH1H2y |2
ENNN ´ EHH1H2

`OpV3q ,(3)

where H, H1 and H2 represent intermediate excited states and VOPE is the sum of pairwise
interactions between nucleons with the exchange of a pion, i.e., VOPEpr1, r2, r3q “ VOPEpr12q`

VOPEpr13q `VOPEpr23q and rij “ ri ´ rj. Evaluating the matrix elements we obtain,

V3N “
ÿ

i‰j

V1π
NN,NNprijq `

1
MN ´M∆

ÿ

i‰j

|V1π
NN,N∆prijq|2 `VFM

ijk ,(4)

where VFM
ijk is the old Fujita-Miyazawa 3NF [9]. So, in the BO the 3NF decomposes into a

sum of One-Pion-Exchange Two-Nucleon (1PE-2N) pair interaction, a Two-Pion-Exchange
Two-Nucleon (2PE-2N) with intermediate ∆ pair interaction and a genuine Two-Pion-
Exchange Three-Nucleon (2PE-3N) interaction. The emergence of short distance vdW
singularities in given channels is evident. Unfortunately the renormalization of singular
three-body problems, even within this simplified BO approach, has not yet been achieved.
We note that similar interactions have proven to be essential, after introducing cut-offs,
which modify the original interaction below 2fm, to describe the binding energies of light
nuclei A ď 8 [10]. This suggests that the BO approximation may be a workable scheme for
multi-nucleon forces.
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4 Conclusions

We have seen how the NN interaction can be faithfully represented as a vdW force that
emerges as in atomic physics where one usually uses the Born-Oppenheimer approximation.
We have calculated the two- and three-body force at second order in perturbation theory
although higher order may in principle be included. The two nucleon potential reproduces
exactly the Skyrme model result within the same approximation and its short distances
behavior is identical to ChTPE at NLO-∆. We have shown results for the deuteron properties
and EM form factors having a very good agreement with experimental data. In the 3N
sector, the BO potential contains the old Fujita-Miyazawa force as well as a residual 1PE-2N
and a 2PE-2N with ∆.
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